|   | 
Details
   web
Records
Author (up) Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory
Title Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 1 Pages 14-19
Keywords HEB, mixer, Allan variance, stabilization, radiometer equation
Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 559
Permanent link to this record
 

 
Author (up) Ryabchun, Sergey; Tong, Cheuk-yu Edward; Blundell, Raymond; Kimberk, Robert; Gol’tsman, Gregory
Title Stabilisation of a terahertz hot-electron bolometer mixer with microwave feedback control Type Conference Article
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 193-198
Keywords waveguide NbN HEB mixers, Allan variance, stability
Abstract We report on implementation of microwave feedback control loop to stabilise the performance of an HEB mixer receiver. It is shown that the receiver sensitivity increases by a factor of 4 over a 16-minute scan, and the corresponding Allan time increases up to 10 seconds, as opposed to an open loop value of 1 second. Our experiments also demonstrate that the receiver sensitivity is limited by the intermediate frequency chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1421
Permanent link to this record
 

 
Author (up) Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory
Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 3 Pages 293-296
Keywords HEB mixer
Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 636
Permanent link to this record
 

 
Author (up) Sahu, Mitrabhanu; Bae, Myung-Ho; Rogachev, Andrey; Pekker, David; Wei, Tzu-Chieh; Shah, Nayana; Goldbart, Paul M.; Bezryadin, Alexey
Title Individual topological tunnelling events of a quantum field probed through their macroscopic consequences Type Journal Article
Year 2009 Publication Nature Phys. Abbreviated Journal Nature Phys.
Volume 5 Issue Pages 503-508
Keywords phase slips, superconducting nanowires
Abstract Phase slips are topological fluctuations that carry the superconducting order-parameter field between distinct current-carrying states. Owing to these phase slips, superconducting nanowires acquire electrical resistance. In such wires, it is well known that at higher temperatures phase slips occur through the process of thermal barrier-crossing by the order-parameter field. At low temperatures, the general expectation is that phase slips should proceed through quantum tunnelling events, which are known as quantum phase slips. However, resistive measurements have produced evidence both for and against the occurrence of quantum phase slips. Here, we report evidence for the observation of individual quantum phase-slip events in homogeneous ultranarrow wires at high bias currents. We accomplish this through measurements of the distribution of switching currents for which the width exhibits a rather counter-intuitive, monotonic increase with decreasing temperature. Importantly, measurements show that in nanowires with larger critical currents, quantum fluctuations dominate thermal fluctuations up to higher temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 928
Permanent link to this record
 

 
Author (up) Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal
Volume 12 Issue 11 Pages 748-750
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements of an NbN phonon-cooled hot-electron bolometric mixer in the terahertz frequency range. The devices were 3 nm thick films with in-plane dimensions 1.7 × 0.2 µm2 and 0.9 × 0.2 µm2 integrated in a complementary logarithmic-spiral antenna. Measurements were performed at seven frequencies ranging from 0.7 THz to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz) and 8800 K (5.2 THz).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 298
Permanent link to this record