toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S. url  openurl
  Title Hot electron mixers for THz applications Type Conference Article
  Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal Proc. 30th ESLAB  
  Volume Issue Pages 207-210  
  Keywords NbN HEB mixers  
  Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.  
  Address Noordwijk, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Rolfe, E. J.; Pilbratt, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Submillimetre and Far-Infrared Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1606  
Permanent link to this record
 

 
Author (up) Elantev, Andrey I.; Karasik, Boris S. url  openurl
  Title Noise temperature of a superconducting hot-electron mixer Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 225  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1645  
Permanent link to this record
 

 
Author (up) Eletskii, A. V.; Sarychev, A. K.; Boginskaya, I. A.; Bocharov, G. S.; Gaiduchenko, I. A.; Egin, M. S.; Ivanov, A. V.; Kurochkin, I. N.; Ryzhikov, I. A.; Fedorov, G. E. url  doi
openurl 
  Title Amplification of a Raman scattering signal by carbon nanotubes Type Journal Article
  Year 2018 Publication Dokl. Phys. Abbreviated Journal Dokl. Phys.  
  Volume 63 Issue 12 Pages 496-498  
  Keywords carbon nanotubes, CNT, Raman scattering, RLS  
  Abstract The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1028-3358 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1775  
Permanent link to this record
 

 
Author (up) Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V. doi  openurl
  Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type Conference Article
  Year 2017 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 132 Issue 2 Pages 2  
  Keywords  
  Abstract Recently bright-light control of the SSPD has been

demonstrated. This attack employed a “backdoor” in the detector biasing

scheme. Under bright-light illumination, SSPD becomes resistive and

remains “latched” in the resistive state even when the light is switched off.

While the SSPD is latched, Eve can simulate SSPD single-photon response

by sending strong light pulses, thus deceiving Bob. We developed the

experimental setup for investigation of a dependence on latching threshold

of SSPD on optical pulse length and peak power. By knowing latching

threshold it is possible to understand essential requirements for

development countermeasures against blinding attack on quantum key

distribution system with SSPDs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1116  
Permanent link to this record
 

 
Author (up) Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type Conference Article
  Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages 01004 (1 to 2)  
  Keywords QKD, SSPD, SNSPD  
  Abstract Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: