|   | 
Details
   web
Records
Author (up) Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M.
Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 18-20
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.
Address Leeds, UK
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-4903-2 Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1581
Permanent link to this record
 

 
Author (up) Chen, J.; Kang, L.; Jin, B. B.; Xu, W. W.; Wu, P. H.; Zhang, W.; Jiang, L.; Li, N.; Shi, S. C.; Gol'tsman, G. N.
Title Properties of terahertz superconducting hot electron bolometer mixers Type Journal Article
Year 2008 Publication Int. J. Terahertz Sci. Technol. Abbreviated Journal Int. J. Terahertz Sci. Technol.
Volume 1 Issue 1 Pages 37-41
Keywords NbN HEB mixers, noise temperature
Abstract A quasi-optical superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixer has been fabricated and measured in the terahertz (THz) frequency range of 0.5~2.52 THz. A receiver noise temperature of 2000 K at 2.52 THz has been obtained for the mixer without corrections. Also, the effect of a Parylene C anti-reflection (AR) coating on the silicon (Si) lens has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1417
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Kroug, M.; Khosropanah, P.; Adam, A.; Merkel, H.; Kolberg, E.; Loudkov, D.; Voronov, B.; Gol'tsman, G.; Richter, H.; Hübers, H. W.
Title A broadband terahertz heterodyne receiver with an NbN HEB mixer Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 85-95
Keywords NbN HEB mixers
Abstract We present a broadband and low noise heterodyne receiver for 1.4-1.7 THz designed for the Hershel Space Observatory. A phonon- cooled NbN HEB mixer was integrated with a normal metal double- slot antenna and an elliptical silicon lens. DSB receiver noise temperature Tr was measured from 1 GHz through 8GHz intermediate frequency band with 50 MHz instantaneous bandwidth. At 4.2 K bath temperature and at 1.6 THz LO frequency Tr is 800 K with the receiver noise bandwidth of 5 GHz. While at 2 K bath temperature Tr was as low as 700 K. At 0.6 THz and 1.1 THz a spiral antenna integrated NbN HEB mixer showed the receiver noise temperature 500 K and 800 K, though no antireflection coating was used in this case. Tr of 1100 K was achieved at 2.5 THz while the receiver noise bandwidth was 4 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harward University
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 332
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Kroug, M.; Merkel, H.; Kollberg, E.; Loudkov, D.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Gershenzon, E.
Title Local oscillator power requirement and saturation effects in NbN HEB mixers Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 273-285
Keywords NbN HEB mixers, LO power, local oscillator power, saturation effect, dynamic range
Abstract The local oscillator power required for NbN hot-electron bolometric mixers (P LO ) was investigated with respect to mixer size, critical temperature and ambient temperature. P LO can be decreased by a factor of 10 as the mixer size decreases from 4×0.4 µm 2 to 0.6×0.13 µm 2 . For the smallest volume mixer the optimal local oscillator power was found to be 15 nW. We found that for such mixer no signal compression was observed up to an input signal of 2 nW which corresponds to an equivalent input load of 20,000 K. For a constant mixer volume, reduction of T c can decrease optimal local oscillator power at least by a factor of 2 without a deterioration of the receiver noise temperature. Bath temperature was found to have minor effect on the receiver characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor Jet Propulsion Laboratory, California Inst.it.u.t.e of Technology
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 318
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A. D.; Gol’tsman, G. N.
Title 2.5 THz multipixel heterodyne receiver based on NbN HEB mixers Type Abstract
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 112
Keywords NbN HEB mixers
Abstract A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. Measurements of the mixers sensitivity and the input RF band are presented, and compared against calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1419
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N.
Title Terahertz heterodyne array based on NbN HEB mixers Type Abstract
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 43
Keywords NbN HEB mixers array
Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1411
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 361-370
Keywords NbN HEB mixers
Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Khosropanah, P.; Berg, T.; Merkel, H.; Kollberg, E.; Drakinskiy, V.; Voronov, B.; Gol’tsman, G.
Title Optimization of HEB mixer for the Herschel Space Observatory Type Abstract
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 16
Keywords NbN HEB mixers, applications
Abstract A mixer development for the HIFI instrument of the Herschel Space Observatory has come to the final stage. In our paper and conference presentation we will describe the most important details of the Band 6 Low and High Mixer Unit design. Special attention will be given to the optimization of the hot- electron bolometer mixer chip, which is based on 3.5nm NbN superconducting film on silicon. As the HEB’s local oscillator power requirements depend on the bolometer size, we have compared mixer noise temperature for different bolometer width- to- length ratio. A trade- off between mixer performance and local oscillator power requirements results in the mixer units equipped with optimized mixer chips, providing the largest coverage of the Band6 RF band with the lowest possible receiver noise. A short account of the beam pattern measurements of Band6 mixers will be given as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1490
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W.
Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 427-431
Keywords NbN HEB mixers, applications
Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1527
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Kroug, M.; Yagoubov, P.; Merkel, H.; Kollberg, E.; Yngvesson, K. S.; Voronov, B.; Gol’tsman, G.
Title IF bandwidth of phonon cooled HEB mixers made from NbN films on MgO substrates Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 219-227
Keywords NbN HEB mixers, cinversion gain bandwidth, IF bandwidth
Abstract An investigation of gain and noise bandwidth of phonon-cooled hot-electron bolometric (HEB) mixers is presented. The radiation coupling to the mixers is quasioptical through either a spiral or twin-slot antenna. A maximum gain bandwidth of 4.8 GHz is obtained for mixers based on a 3.5 nm thin NbN film with Tc= 10 K. The noise bandwidth is 5.6 GHz, at the moment limited by parasitic elements in the, device mount fixture. At 0.65 THz the DSB receiver noise temperature is 700-800 К in the IF band 1-2 GHz, and 1150-2700 К in the band 3.5-7 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1557
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Ronnung, F.; Gol'tsman, G.; Gershenzon, E.; Winkler, D.
Title YBa2Cu3O7-δ hot-electron bolometer with submicron dimensions Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 181-189
Keywords YBCO HTS HEB mixers
Abstract Photoresponse of YBa2Cu3O7-δ hot-electron bolometers to modulated near-infrared radiation was studied at a modulation .frequenc y var y ing from 0.2 MHz to 2 GHz. Bolometers were _fabricated from a 50 12 M thick film and had in-plane areas of 10x10 , um 2 . 2x0.2 s um', 1x0.2 p.m', and 0.5x0.2 jim. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1572
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Rönnung, F.; Gol'tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7−δ hot-electron bolometer mixer Type Journal Article
Year 2000 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 341-348 Issue Pages 2653-2654
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on YBa2Cu3O7−δ (YBCO) superconducting thin film. Mixer conversion loss, absorbed local oscillator power and intermediate frequency bandwidth was measured at the local oscillator frequency 600 GHz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated into planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1552
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Rönnung, F.; Gol’tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7-δ hot-electron bolometer mixer at 0.6 THz Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 517-522
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on a YBa 2 Cu 3 O 7-δ (YBCO) superconducting thin film. Mixer conversion loss of –46 dB, absorbed local oscillator power and intermediate frequency bandwidth were measured at the local oscillator frequency 0.6 THz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated with a planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1556
Permanent link to this record
 

 
Author (up) Cherednichenko, S.; Yagoubov, P.; Il'In, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers on sapphire substrates Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 245-257
Keywords NbN HEB mixers, fabrication process
Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 mm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 1.1 wide and 211 long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.5 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 276
Permanent link to this record
 

 
Author (up) Edward Tong, C.-Y.; Loudkov, Denis N.; Paine, Scott N.; Marrone, Dan P.; Blundell, Raymond
Title Vector measurement of the beam pattern of a 1.5 THz superconducting HEB receiver Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 453-456
Keywords NbTiN HEB mixers
Abstract Near-field vector beam pattern of the 1.5 THz superconducting Hot Electron Bolometer (HEB) receiver currently in operation in Northern Chile has been performed in our laboratory. Using an open waveguide probe, we have mapped both the amplitude and phase of the beam emerging from our 1.5 THz HEB receiver package, across a number of planes along the line of propagation of the radio-beam. With an integration time of about 100 ms per point, a signal-to-noise ratio of about 25 dB was achieved for a beam waist of 3.5 mm. These measurements have proved to be invaluable in achieving good alignment between the cryostat housing the HEB mixer and the remainder of the receiver and telescope optics. The accuracy of our beam measurement is estimated to be ±0.2 mm in position and ±5 arc minutes in angular displacement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1474
Permanent link to this record