toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W. url  doi
openurl 
  Title Ultimate performance of a superconducting quantum detector Type Journal Article
  Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.  
  Volume 21 Issue 3 Pages 171-178  
  Keywords NbN SSPD, SNSPD  
  Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 534  
Permanent link to this record
 

 
Author (up) Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G. url  isbn
openurl 
  Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
  Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal Proc. 6th European Conf. Appl. Supercond.  
  Volume 181 Issue Pages 2960-2965  
  Keywords NbN HEB mixers  
  Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.  
  Address Sorrento, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0750309814, 978-0750309813 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1505  
Permanent link to this record
 

 
Author (up) Sergeev, A.; Semenov, A.; Trifonov, V.; Karasik, B.; Gol'tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Heat transfer in YBaCuO thin film/sapphire substrate system Type Journal Article
  Year 1994 Publication J. Supercond. Abbreviated Journal J. Supercond.  
  Volume 7 Issue 2 Pages 341-344  
  Keywords YBCO films  
  Abstract The thermal boundary resistance at the YBaCuO thin film/Al2O3 substrate interface was investigated. The transparency for thermal phonons incident on the interface as well as for phonons moving from the substrate was determined. We have measured a transient voltage response of current-biased films to continuously modulated radiation. The observed knee in the modulation frequency dependence of the response reflects the crossover from the diffusion regime to the contact resistance regime of the heat transfer across the interface. The values of transparency were independently deduced both from the phonon escape time and from the time of phonon return to the film which were identified with peculiarities in the frequency dependence. The results are much more consistent with the acoustic mismatch theory than the diffuse mismatch model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0896-1107 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1647  
Permanent link to this record
 

 
Author (up) Shcherbatenko, M.; Lobanov, Y.; Kovalyuk, V.; Korneev, A.; Gol'tsman, G. N. url  openurl
  Title Photon counting detector as a mixer with picowatt local oscillator power requirement Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 110  
  Keywords SSPD mixer, SNSPD  
  Abstract At the current stage of the heterodyne receiver technology, great attention is paid to the development of detector arrays and matrices comprising many detectors on a single wafer. However, any traditional THz detector (such as SIS, HEB, or Schottky diode) requires quite a noticeable amount of Local Oscillator (LO) power which scales with the matrix size, and the total amount of the LO power needed is much greater than that available from compact and handy solid state sources. Substantial reduction of the LO power requirement may be obtained with a photon-counting detector used as a mixer. This approach, mentioned earlier in [1,2] provides a number of advantages. Thus, sensitivity of such a detector would be at the quantum limit (because of the photon-counting nature of the detector) and just a few LO photons for the mixing would be required leading to a possible breakthrough in the matrix receiver development. In addition, the receiver could be easily tuned from the heterodyne to the direct detection mode without any loss in its sensitivity with the latter limited only by the quantum efficiency of the detector used. We demonstrate such a technique with the use of the Superconducting Nanowire Single Photon Detector(SNSPD)[3] irradiated by both 1.5 μm LO with a tiny amount of power (from a few picowatts down to femtowatts) facing the detector, and the test signal with a power significantly less than that of the LO. The SNSPD was operated in the current mode and the bias current was slightly below its critical value. Irradiating the detector with either the LO or the signal source produced voltage pulses which are statistically evenly distributed and could be easily counted by a lab counter or oscilloscope. Irradiating the detector by the both lasers simultaneously produced pulses at the frequency f m which is the exact difference between the frequencies at which the two lasers operate. f m could be deduced form either counts statistics integrated over a sufficient time interval or with the help of an RF spectrum analyzer. In addition to the chip SNSPD with normal incidence coupling, we use the detectors with a travelling wave geometry design [4]. In this case a niobium nitride nanowire is placed on the top of a nanophotonic waveguide, thus increasing the efficient interaction length. Integrated device scheme allows us to measure the optical losses with high accuracy. Our approach is fully scalable and, along with a large number of devices integrated on a single chip can be adapted to the mid and far IR ranges. This work was supported in part by the Ministry of Education and Science of the Russian Federation, contract no. 14.B25.31.0007 and by RFBR grant # 16-32-00465. 1. Leaf A. Jiang and Jane X. Luu, ―Heterodyne detection with a weak local oscillator, Applied Optics Vol. 47, Issue 10, pp. 1486-1503 (2008) 2. Matsuo H. ―Requirements on Photon Counting Detectors for Terahertz Interferometry J Low Temp Phys (2012) 167:840–845 3. A. Semenov, G. Gol'tsman, A. Korneev, “Quantum detection by current carrying superconducting film”, Physica C, 352, pp. 349-356 (2001) 4. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, ―Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths., Sci. Rep., vol. 5, p. 10941, (2015).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1203  
Permanent link to this record
 

 
Author (up) Shurakov, A.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Microwave stabilization of a HEB mixer in a pulse-tube cryocooler Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 1501504-1501504  
  Keywords NbN HEB mixers  
  Abstract We report the results of our study of the stability of an 800 GHz hot electron bolometer (HEB) mixer cooled with a pulse-tube cryocooler. Pulse-tube cryocoolers introduce temperature fluctuations as well as mechanical vibrations at a frequency of ~1 Hz, both of which can cause receiver gain fluctuations at that frequency. In our system, the motor of the cryocooler was separated from the cryostat to minimize mechanical vibrations, leaving thermal effects as the dominant source of the receiver gain fluctuations. We measured root mean square temperature variations of the 4 K stage of ~7 mK. The HEB mixer was pumped by a solid state local oscillator at 810 GHz. The root mean square current fluctuations at the low noise operating point (1.50 mV, 56.5 μA) were ~0.12 μA, and were predominantly due to thermal fluctuations. To stabilize the bias current, microwave radiation was injected to the HEB mixer. The injected power level was set by a proportional-integral-derivative controller, which completely compensates for the bias current oscillations induced by the pulse-tube cryocooler. Significant improvement in the Allan variance of the receiver output power was obtained, and an Allan time of 5 s was measured.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1372  
Permanent link to this record
 

 
Author (up) Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gol'tsman, G. N.; Verevkin, M.; Sobolewski, R. url  openurl
  Title NbN superconducting single-photon detectors coupled with a communication fiber Type Miscellaneous
  Year 2004 Publication INIS Abbreviated Journal INIS  
  Volume 37 Issue 2 Pages 1-2  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address Stare Jablonki, Poland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 8-th Electron Technology Conference ELTE  
  Notes Approved no  
  Call Number Serial 1486  
Permanent link to this record
 

 
Author (up) Slysz, W.; Wegrzecki, M.; Papis, E.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R. url  openurl
  Title A method of optimization of the NbN superconducting single-photon detector Type Miscellaneous
  Year 2004 Publication INIS Abbreviated Journal INIS  
  Volume 36 Issue 27 Pages 1-2  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 5-th International Symposium Ion Implantation and Other Applications of Ions and Electrons, ION  
  Notes Reference num. 36060124 Approved no  
  Call Number Serial 1485  
Permanent link to this record
 

 
Author (up) Smirnov, A. V.; Baryshev, A. M.; de Bernardis, P.; Vdovin, V. F.; Gol'tsman, G. N.; Kardashev, N. S.; Kuz'min, L. S.; Koshelets, V. P.; Vystavkin, A. N.; Lobanov, Yu. V.; Ryabchun, S. A.; Finkel, M. I.; Khokhlov, D. R. doi  openurl
  Title The current stage of development of the receiving complex of the millimetron space observatory Type Journal Article
  Year 2012 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 54 Issue 8 Pages 557-568  
  Keywords Millimetron space observatory, HEB applications  
  Abstract We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1079  
Permanent link to this record
 

 
Author (up) Smirnov, A. V.; Larionov, P. A.; Finkel, M. I.; Maslennikov, S. N.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbZr films for THz phonon-cooled HEB mixers Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 44-47  
  Keywords HEB, NbZr, material search  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 577  
Permanent link to this record
 

 
Author (up) Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. url  openurl
  Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 405-412  
  Keywords NbN HEB mixers  
  Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1502  
Permanent link to this record
 

 
Author (up) Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Gol'tsman, G. N. url  doi
openurl 
  Title Infrared and terahertz detectors on basis of superconducting nanostructures Type Conference Article
  Year 2010 Publication Microwave and Telecom. Technol. (CriMiCo), 20th Int. Crimean Conf. Abbreviated Journal  
  Volume Issue Pages 823-824  
  Keywords SSPD, SNSPD, HEB  
  Abstract Results of development of single-photon receiving systems of visible, infrared and terahertz range based on thin-film superconducting nanostructures are presented. The receiving systems are produced on the basis of superconducting nanostructures, which function by means of hot-electron phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ smirnov2010infrared Serial 1025  
Permanent link to this record
 

 
Author (up) Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 61 Issue Pages 1081-1085  
  Keywords SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
 

 
Author (up) Sobolewski, R.; Verevkin, A.; Gol'tsman, G.N.; Lipatov, A.; Wilsher, K. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors and their applications Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages 1151-1157  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of ultrafast single-photon detectors for counting both visible and infrared photons. The detection mechanism is based on photon-induced hotspot formation, which forces the supercurrent redistribution and leads to the appearance of a transient resistive barrier across an ultrathin, submicrometer-width, superconducting stripe. The devices were fabricated from 3.5-nm- and 10-nm-thick NbN films, patterned into <200-nm-wide stripes in the 4 /spl times/ 4-/spl mu/m/sup 2/ or 10 /spl times/ 10-/spl mu/m/sup 2/ meander-type geometry, and operated at 4.2 K, well below the NbN critical temperature (T/sub c/=10-11 K). Continuous-wave and pulsed-laser optical sources in the 400-nm-to 3500-nm-wavelength range were used to determine the detector performance in the photon-counting mode. Experimental quantum efficiency was found to exponentially depend on the photon wavelength, and for our best, 3.5-nm-thick, 100-/spl mu/m/sup 2/-area devices varied from >10% for 405-nm radiation to 3.5% for 1550-nm photons. The detector response time and jitter were /spl sim/100 ps and 35 ps, respectively, and were acquisition system limited. The dark counts were below 0.01 per second at optimal biasing. In terms of the counting rate, jitter, and dark counts, the NbN single-photon detectors significantly outperform their semiconductor counterparts. Already-identified applications for our devices range from noncontact testing of semiconductor CMOS VLSI circuits to free-space quantum cryptography and communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 509  
Permanent link to this record
 

 
Author (up) Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S. url  doi
openurl 
  Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3548-3551  
  Keywords NbN HEB mixers  
  Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1595  
Permanent link to this record
 

 
Author (up) Svechnikov, S.; Gol'tsman, G.; Voronov, B.; Yagoubov, P.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekstrom, H.; Kollberg, E.; Semenov, A.; Gousev, Y.; Renk, K. url  doi
openurl 
  Title Spiral antenna NbN hot-electron bolometer mixer at submm frequencies Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3395-3398  
  Keywords NbN HEB mixers  
  Abstract We have studied the phonon-cooled hot-electron bolometer (HEB) as a quasioptical mixer based on a spiral antenna designed for the 0.3-1 THz frequency band and fabricated on sapphire and high resistivity silicon substrates. HEB devices were produced from superconducting 3.5-5 nm thick NbN films with a critical temperature 10-12 K and a critical current density of approximately 10/sup 7/ A/cm/sup 2/ at 4.2 K. For these devices we reached a DSB receiver noise temperature below 1500 K, a total conversion loss of L/sub t/=16 dB in the 500-700 GHz frequency range, an IF bandwidth of 3-4 GHz and an optimal LO absorbed power of /spl sime/4 /spl mu/W. We experimentally analyzed various contributions to the conversion loss and obtained an RF coupling factor of about 5 dB, internal mixer loss of 10 dB and IF mismatch of 1 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1597  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: