toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M. openurl 
  Title A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 259-264  
  Keywords fromIPMRAS  
  Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 790  
Permanent link to this record
 

 
Author (up) Ulhaq, A.; Weiler, S.; Ulrich, S. M.; Roßbach, R.; Jetter, M.; Michler, P. openurl 
  Title Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 238-242  
  Keywords fromIPMRAS  
  Abstract Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both `single' and `cascaded' photon emission from the Mollow triplet sidebands. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ~ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 788  
Permanent link to this record
 

 
Author (up) Usmani, Imam; Clausen, Christoph; Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas openurl 
  Title Heralded quantum entanglement between two crystals Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 234-237  
  Keywords fromIPMRAS  
  Abstract Quantum networks must have the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater, which allows the distance barrier of direct transmission of single photons to be overcome, provided remote quantum memories can be entangled in a heralded fashion. Here, we report the observation of heralded entanglement between two ensembles of rare-earth ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of crystals doped with rare-earth ions for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 793  
Permanent link to this record
 

 
Author (up) Williams, Benjamin S. openurl 
  Title Terahertz quantum-cascade lasers Type Journal Article
  Year 2007 Publication Nature Photonics Abbreviated Journal  
  Volume 1 Issue Pages 517-525  
  Keywords QCL review  
  Abstract Six years after their birth, terahertz quantum-cascade lasers can now deliver milliwatts or more of continuous-wave coherent radiation throughout the terahertz range — the spectral regime between millimetre and infrared wavelengths, which has long resisted development. This paper reviews the state-of-the-art and future prospects for these lasers, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 632  
Permanent link to this record
 

 
Author (up) Wu, Ming C. openurl 
  Title Optoelectronic tweezers Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 5 Issue 6 Pages 322-324  
  Keywords fromIPMRAS  
  Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 775  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: