toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
  Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 98 Issue Pages 033507 (1 to 3)  
  Keywords NbN HEB mixer  
  Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 638  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Seliverstov, Sergey; Zolotov, Philipp; Kaurova, Natalya; Voronov, Boris; Finkel, Matvey; Goltsman, Gregory url  openurl
  Title Noise temperature and noise bandwidth of hot-electron bolometer mixer at 3.8 THz Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 77  
  Keywords NbN HEB mixer  
  Abstract We report on our recent results of double sideband (DSB) noise temperature and bandwidth measurements of quasi-optical hot electron bolometer (HEB) mixers at local oscillator frequency of 3.8 THz. The HEB mixers used in this work were made of a NbN thin film and had a superconducting transition temperature of about 10.3 K. To couple terahertz radiation, the NbN microbridge (0.2 μm long and 2 μm wide) was integrated with a planar logarithmic-spiral antenna. The mixer chip was glued to an elliptical Si lens clamped tightly to a mixer block mounted on the 4.2 K plate of a liquid helium cryostat. The terahertz radiation was fed into the HEB device through the cryostat window made of a 0.5 mm thick HDPE. A band-pass mesh filter was mounted on the 4.2 K plate to minimize the direct detection effect [1]. We used a gas discharge laser irradiating at 3.8 THz H 2 0 line as a local oscillator (LO). The LO power was combined with a black body broadband radiation via Mylar beam splitter. Our receiver allows heterodyne detection with an intermediate frequency (IF) of a several gigahertz which dictates usage of a wideband SiGe low noise amplifier [2]. The receiver IF output signal was further amplified at room temperature and fed into a square-law power detector through a band-pass filter. The DSB receiver noise temperature was measured using a conventional Y-factor technique at IF of 1.25 GHz and band of 40 MHz. Using wideband amplifiers at both cryogenic and room temperature stages we have estimated IF bandwidth of the HEB mixers used. The obtained results strengthen the position of the HEB mixer as one of the most important tools for submillimeter astronomy. This device operates well above the energy gap (at frequencies above 1 THz) where performance of state-of-the-art SIS mixers starts to degrade. So, HEB mixers are expected to be a device of choice in astrophysical observations (ground-, aircraft- and space-based) at THz frequencies due to its excellent noise performance and low LO power requirements. The HEB mixers will be in operation on Millimetron Space Observatory. References 1. J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. R. Gao, T. M. Klapwijk, Yu. Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman, Appl. Phys. Lett., 86, 163503 (2005). 2. Sander Weinreb, Life Fellow, IEEE, Joseph C. Bardin, Student Member, IEEE, and Hamdi Mani, “Design of Cryogenic SiGe Low-Noise Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, 55, 11, 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1362  
Permanent link to this record
 

 
Author Tretyakov, I. V.; Anfertyev, V. A.; Revin, L. S.; Kaurova, N. S.; Voronov, B. M.; Vaks, V. L.; Goltsman, G. N. url  doi
openurl 
  Title Sensitivity and resolution of a heterodyne receiver based on the NbN HEB mixer with a quantum-cascade laser as a local oscillator Type Journal Article
  Year 2018 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 60 Issue 12 Pages 988-992  
  Keywords NbN HEB mixer  
  Abstract We present the results of experimental studies of the basic characteristics and operation features of a terahertz heterodyne detector based on the superconducting NbN HEB mixer and a quantum cascade laser as a local oscillator operating at a frequency of 2.02 THz. The measured noise temperature of such a mixer amounted to 1500 K. The spectral resolution of the detector is determined by the width of the local-oscillator spectral line whose measured value does not exceed 1 MHz. The quantum-cascade laser could be linearly tuned with respect to frequency with the coefficient 7.2 MHz/mA within the limits of the current oscillation bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1307  
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N. url  doi
openurl 
  Title Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 36 Issue 12 Pages 1103-1105  
  Keywords NbN HEB mixer  
  Abstract Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1389  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: