|   | 
Details
   web
Records
Author (up) Gol'tsman, G. N.; Semenov, A. D.; Gousev, Y. P.; Zorin, M. A.; Gogidze, I. G.; Gershenzon, E. M.; Lang, P. T.; Knott, W. J.; Renk, K. F.
Title Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light Type Journal Article
Year 1991 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 4 Issue 9 Pages 453-456
Keywords NbN HEB detectors
Abstract The authors report on the application of a broad-band NbN film detector which has high sensitivity and picosecond response time for detection of radiation from millimetre wavelengths to visible light. From a study of amplitude modulated radiation of backward-wave tubes and picosecond pulses from gas and solid state lasers at wavelengths between 2 mm and 0.53 mu m, they found a detectivity of 1010 W-1 cm Hz-1/2 and a response time of less than 50 ps at T=10 K. The characteristics were provided by using a 150 AA thick NbN film patterned into a structure of micron strips. According to the proposed detection mechanism, namely electron heating, they expect an intrinsic response time of approximately 20 ps at the same temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 242
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Karasik, B. S.; Svechnikov, S. I.; Gershenzon, E. M.; Ekström, H.; Kollberg E.
Title Noise temperature of NbN hot—electron quasioptical superconducting mixer in 200-700 GHz range Type Abstract
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 268
Keywords NbN HEB mixers, noise temperature
Abstract The electron heating effect in superconducting films is becoming very attractive for the development of THz range mixers because of the absence of frequency limitations inherent in the bolometric mechanism. However, the evidence for the spectral dependence of the position of optimal operating point has been found recently for NbN thin film devices 1.2 • The effect is presumably attributed to the variation in the absorption of radiation depending on the frequency. Since the resistive state is not spatially uniform the coupling efficiency of the mixer device with radiation can be different for frequencies larger than Zeilh and those smaller than 2Alh (d is the effective superconducting gap in the resistive state). To study the effect more thoroughly we have investigated the noise temperature of quasioptical NbN mixer device with broken hue tapered slot antenna in the frequency range 200-700 GHz. The device consists of several (5-10) parallel strips 1 jim wide and 6-7 tun thick made from NbN film on Si0 2 -Si 3 N 4 -Si membrane. The strips are connected with the gold contacts of the slot-line antenna which serves both as bias and IF leads. We used backward wave oscillators as LO sources and a standard hot/cold load technique for noise temperature measurements. The frequency dependence of noise temperature is mainly determined by two factors: frequency properties of the antenna and frequency dependence of the NbN film impedance. To separate both factors we monitored the frequency dependence of the device responsivity in the detector mode at a higher temperature within the superconducting transition where the impedance of NbN film is close to its normal resistance. In this case the impedance of the device itself is frequency independent. The experimental results will be reported at the Symposium. 1. G. Gollsman, S. Jacobsson, H. EkstrOm, B. Karasik, E. Kollberg, and E. Gershenzon, “Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation,” Proc of the 5th Int. Symp. on Space Terahertz Technology, pp. 209-213a, May 10-12,1994. 2. B.S. Karasik, G.N. Gol i tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekstrom, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer,” presented at the ASC94, submitted to IEEE Trans. on Appl. Superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1627
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Loudkov, D. N.
Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
Year 2003 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 46 Issue 8/9 Pages 604-617
Keywords NbN HEB mixers
Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes UDC 537.312.62 Approved no
Call Number Serial 472
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Jacobsson, S.; Ekstrom, H.; Karasik, B.; Kollberg, E.; Gershenzon, E.
Title Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation Type Conference Article
Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 209-213a
Keywords NbN HEB mixers
Abstract NbN hot-electron mixers combined with slot-line tapered antennas on Si wdnitride membranes had been fabricated. Several strips of 1 gm wide and 5 tan long made from 100 A NbN film are inserted into the slot antenna. IV-curves under local oscillator power in 300-350 GHz frequency range and conversion gain dependencies on intermediate fre- quency in the 0.1-1 GHz range are measured and compared with that for 100 GHz frequency band. Our results show that pumped IV-curves and intermediate frequency bands are different for 100 GHz and 300 GHz frequency ranges. The interpretation exploits the fact that for the lowest radiation frequency the superconducting energy gap is larger than the radiation quantum energy while they are comparable at the higher frequency. Tha results show that such mixers have good perspectives for terahertz receiving technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1643
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B.
Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS
Volume 935 Issue Pages 210 (1 to 6)
Keywords NbN HEB mixers
Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1440
Permanent link to this record
 

 
Author (up) Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M.
Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5727 Issue Pages 95-106
Keywords NbN HEB mixers
Abstract We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV
Notes Approved no
Call Number Serial 378
Permanent link to this record
 

 
Author (up) Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M.
Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 154-159
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 547
Permanent link to this record
 

 
Author (up) Gol’tsman, G. N.; Gershenzon, E. M.
Title Phonon-cooled hot-electron bolometric mixer: overview of recent results Type Journal Article
Year 1999 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.
Volume 6 Issue 10-12 Pages 649-655
Keywords NbN HEB mixers
Abstract The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0964-1807 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1564
Permanent link to this record
 

 
Author (up) Gol’tsman, G. N.; Gershenzon, E. M.
Title High speed hot-electron superconducting bolometer Type Conference Article
Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2104 Issue Pages 181-182
Keywords NbN HEb, Nb, Al
Abstract Physical limitation of response time of a superconducting bolometer as well as the nature of non-equilibrium detection of radiation have been investigated for Al, Nb and NbN thin films in spectral range from submillimeter to near-infraredwavelengths [1,2]. In the case of ideal heat removal from the film with the f_‘. 100A thickness the detection mechanism is an electron heating effect that is not selective to radiation wavelength in a very broad range. The response time ofan electron heating bolometer is determined by an electron-phonon interaction time. This time is of about 10 ns, 0.5 ns and 20 ps for Al, Nb, and NbN correspondingly near the critical temperature of the superconducting film. Thesensitive area of the bolometer consists of a number of narrow strips (with awidth of 1µm) connected in parallel to contact pads; these pads together witha sapphire substrate and a ground plate represent the microstrip transmissionline with an impedance of 50 Q.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Birch, J.R.; Parker, T.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves
Notes Approved no
Call Number Serial 1652
Permanent link to this record
 

 
Author (up) Gousev, Y. P.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.; Semenov, A. D.; Barowski, H. S.; Nebosis, R. S.; Renk, K. F.
Title Quasioptical superconducting hot electron bolometer for submillmeter waves Type Journal Article
Year 1996 Publication Int. J. of Infrared and Millimeter Waves Abbreviated Journal Int. J. of Infrared and Millimeter Waves
Volume 17 Issue 2 Pages 317-331
Keywords NbN HEB
Abstract We report on a superconducting hot electron bolometer coupled to radiation via a broadband antenna. The bolometer, a structured NbN film, was patterned on a thin dielectric membrane between terminals of a gold slotline antenna. We investigated the response to submillimeter radiation (wave-lengths ∼ 0.1 mm to 0.7 mm) in the fundamental Gaussian mode. We found that the directivity of the antenna was constant within a factor of 2.5 through the whole experimental range. The noise equivalent power of the bolometer at 119 µm was ∼ 3 · 10−13 W/Hz1/2; a time constant of ∼ 160 ps was estimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0195-9271 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1618
Permanent link to this record
 

 
Author (up) Gousev, Yu. P.; Gol'tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.; Nebosis, R. S.; Heusinger, M. A.; Renk, K. F.
Title Broadband ultrafast superconducting NbN detector for electromagnetic radiation Type Journal Article
Year 1994 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 75 Issue 7 Pages 3695-3697
Keywords NbN HEB
Abstract An ultrafast detector that is sensitive to radiation in a broad spectral range from submillimeter waves to visible light is reported. It consists of a structured NbN thin film cooled to a temperature below Tc (∼11 K). Using 20 ps pulses of a GaAs laser, we observed signal pulses with both rise and decay time of about 50 ps. From the analysis of a mixing experiment with submillimeter radiation we estimate an intrinsic response time of the detector of ∼12 ps. The sensitivity was found to be similar for the near‐infrared and submillimeter radiation. Broadband sensitivity and short response time are attributed to a quasiparticle heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 252
Permanent link to this record
 

 
Author (up) Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 121-129
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1588
Permanent link to this record
 

 
Author (up) Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte 2, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Increased bandwidth of NbN phonon cooled hot electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 381-386
Keywords NbN HEB mixers, IF bandwidth
Abstract We study experimentally the IF gain bandwidth of NbN phonon-cooled hot-electron-bolometer (HEB) mixers for a set of devices with different contact structures but an identical NbN film. We observe that the IF bandwidth depends strongly on the exact contact structure and find an IF gain bandwidth of 6 GHz for a device with an additional superconducting layer (NbTiN) in between the active NbN film and the gold contact to the antenna. These results contradict the common opinion that the IF bandwidth is determined by the phonon-escape time between the NbN film and the substrate. Hence we calculate the IF gain bandwidth of a superconducting film using a two-temperature model. We find that the bandwidth increases strongly with operating temperature and is not limited by the phonon escape time. This is because of strong temperature dependence of the phonon specific heat in the NbN film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1494
Permanent link to this record
 

 
Author (up) Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record
 

 
Author (up) Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Improved NbN phonon cooled hot electron bolometer mixers Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 413-423
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance to Au pads. By adding either a 5 nm Nb or a 10 nm NbTiN layer between the Au and NbN, to preserve superconductivity in the NbN under the Au contact pad, superior noise temperatures have been obtained. Using DC I,V curves and resistive transitions in combination with process parameters we analyze the nature of these improved devices and determine interface transparencies.
Address
Corporate Author Thesis
Publisher Place of Publication Tucson, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 337
Permanent link to this record