toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang openurl 
  Title Experimental loss-tolerant quantum coin flipping Type Journal Article
  Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 2 Issue 561 Pages 7  
  Keywords fromIPMRAS  
  Abstract Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 766  
Permanent link to this record
 

 
Author Bialczak, R. C.; Ansmann, M.; Hofheinz, M.; Lucero, E.; Neeley, M.; O'Connell, A. D.; Sank, D.; Wang, H.; Wenner, J.; Steffen, M.; Cleland, A. N.; Martinis, J. M. openurl 
  Title Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 6 Pages 409-413  
  Keywords fromIPMRAS  
  Abstract Quantum gates must perform reliably when operating on standard input basis states and on complex superpositions thereof. Experiments using superconducting qubits have validated truth tables for particular implementations of, for example, the controlled-NOT gate, but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) to fully characterize the performance of a universal entangling gate between two superconducting qubits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction and ideally simultaneous single-shot measurement of output states. In recent work, it has been proposed to use QPT to probe noise properties and time dynamics of qubit systems and to apply techniques from control theory to create scalable qubit benchmarking protocols. We use QPT to measure the fidelity and noise properties of an entangling gate. In addition to demonstrating a promising fidelity, our entangling gate has an on-to-off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as QPT has previously been demonstrated only with single solid-state qubits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 803  
Permanent link to this record
 

 
Author Biercuk, Michael J. openurl 
  Title A quantum spectrum analyser Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue Pages 525–526  
  Keywords fromIPMRAS  
  Abstract Noise filters based on so-called dynamical decoupling pulse sequences can suppress decoherence in quantum systems. Turning this idea on its head now provides a new technique for studying the noise itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 826  
Permanent link to this record
 

 
Author Billangeon, P.-M.; Nakamura, Y. openurl 
  Title Superconducting devices: Quantum cups and balls Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 8 Pages 594-595  
  Keywords fromIPMRAS  
  Abstract A single microwave photon in a superposition of two states of different frequency is now demonstrated using a superconducting quantum interference device to mediate the coupling between two harmonics of a resonator. Such quantum circuits bring closer the possibility of controlling photon-photon interactions at the single-photon level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 820  
Permanent link to this record
 

 
Author Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J. M.; Eichler, C.; Baur, M.; Bianchetti, R.; Leek, P. J.; Filipp, S.; da Silva, M. P.; Blais, A.; Wallraff, A. openurl 
  Title Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 2 Pages 154-158  
  Keywords fromIPMRAS  
  Abstract At optical frequencies the radiation produced by a source, such as a laser, a black body or a single-photon emitter, is frequently characterized by analysing the temporal correlations of emitted photons using single-photon counters. At microwave frequencies, however, there are no efficient single-photon counters yet. Instead, well-developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate first- and second-order correlation function measurements of a pulsed microwave-frequency single-photon source integrated on the same chip with a 50/50 beam splitter followed by linear amplifiers and quadrature amplitude detectors. We clearly observe single-photon coherence in first-order and photon antibunching in second-order correlation function measurements of the propagating fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 835  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: