toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B. url  doi
openurl 
  Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
  Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS  
  Volume 935 Issue Pages 210 (1 to 6)  
  Keywords NbN HEB mixers  
  Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-9172 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1440  
Permanent link to this record
 

 
Author (up) Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. doi  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5727 Issue Pages 95-106  
  Keywords NbN HEB mixers  
  Abstract We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV  
  Notes Approved no  
  Call Number Serial 378  
Permanent link to this record
 

 
Author (up) Goltsman, G. N. url  doi
openurl 
  Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
  Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7236 Issue Pages 72360D (1 to 11)  
  Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films  
  Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1403  
Permanent link to this record
 

 
Author (up) Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Nano-structured superconducting single-photon detectors Type Journal Article
  Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal  
  Volume 520 Issue 1-3 Pages 527-529  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1495  
Permanent link to this record
 

 
Author (up) Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R. url  doi
openurl 
  Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5732 Issue Pages 520-529  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Sensing and Nanophotonic Devices II  
  Notes Approved no  
  Call Number Serial 1478  
Permanent link to this record
 

 
Author (up) Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. url  openurl
  Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI  
  Volume 9 Issue Pages 154-159  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 547  
Permanent link to this record
 

 
Author (up) Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Phonon-cooled hot-electron bolometric mixer: overview of recent results Type Journal Article
  Year 1999 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.  
  Volume 6 Issue 10-12 Pages 649-655  
  Keywords NbN HEB mixers  
  Abstract The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-1807 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1564  
Permanent link to this record
 

 
Author (up) Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title High speed hot-electron superconducting bolometer Type Conference Article
  Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 2104 Issue Pages 181-182  
  Keywords NbN HEb, Nb, Al  
  Abstract Physical limitation of response time of a superconducting bolometer as well as the nature of non-equilibrium detection of radiation have been investigated for Al, Nb and NbN thin films in spectral range from submillimeter to near-infraredwavelengths [1,2]. In the case of ideal heat removal from the film with the f_‘. 100A thickness the detection mechanism is an electron heating effect that is not selective to radiation wavelength in a very broad range. The response time ofan electron heating bolometer is determined by an electron-phonon interaction time. This time is of about 10 ns, 0.5 ns and 20 ps for Al, Nb, and NbN correspondingly near the critical temperature of the superconducting film. Thesensitive area of the bolometer consists of a number of narrow strips (with awidth of 1µm) connected in parallel to contact pads; these pads together witha sapphire substrate and a ground plate represent the microstrip transmissionline with an impedance of 50 Q.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Birch, J.R.; Parker, T.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves  
  Notes Approved no  
  Call Number Serial 1652  
Permanent link to this record
 

 
Author (up) Gol’tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. url  doi
openurl 
  Title Picosecond superconducting single-photon optical detector Type Journal Article
  Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 79 Issue 6 Pages 705-707  
  Keywords NbN SSPD, SNSPD  
  Abstract We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1543  
Permanent link to this record
 

 
Author (up) Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Fabrication of nanostructured superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 192-195  
  Keywords NbN SSPD, SNSPD  
  Abstract Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1515  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: