|   | 
Details
   web
Records
Author (down) Zurek, Wojciech Hubert
Title Quantum Darwinism Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue 3 Pages 181-188
Keywords fromIPMRAS
Abstract Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 799
Permanent link to this record
 

 
Author (down) Zhu, J.; Christensen, J.; Jung, J.; Martin-Moreno, L.; Yin, X.; Fok, L.; Zhang, X.; Garcia-Vidal, F. J.
Title A holey-structured metamaterial for acoustic deep-subwavelength imaging Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 1 Pages 52-55
Keywords fromIPMRAS
Abstract For classical waves such as light or sound, diffraction sets a natural limit on how finely the details of an object can be recorded on its image. Recently, various optical superlenses based on the metamaterials concept have shown the possibility of overcoming the diffraction limit. Similar two-dimensional (2D) acoustic hyperlens designs have also been explored. Here we demonstrate a 3D holey-structured metamaterial that achieves acoustic imaging down to a feature size of λ/50. The evanescent field components of a subwavelength object are efficiently transmitted through the structure as a result of their strong coupling with Fabry-Pérot resonances inside the holey plate. This capability of acoustic imaging at a very deep-subwavelength scale may open the door for a broad range of applications, including medical ultrasonography, underwater sonar and ultrasonic non-destructive evaluation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 809
Permanent link to this record
 

 
Author (down) Zhang, Qiang; Goebel, Alexander; Wagenknecht, Claudia; Chen, Yu-Ao; Zhao, Bo; Yang, Tao; Mair, Alois; Schmiedmayer, Jörg; Pan, Jian-Wei
Title Experimental quantum teleportation of a two-qubit composite system Type Journal Article
Year 2006 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 2 Issue 10 Pages 678-682
Keywords fromIPMRAS; quantum teleportation
Abstract Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with single photonic or ionic qubits. However, teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 795
Permanent link to this record
 

 
Author (down) Zakka-Bajjani, Eva; Nguyen, François; Lee, Minhyea; Vale, Leila R.; Simmonds, Raymond W.; Aumentado, José
Title Quantum superposition of a single microwave photon in two different 'colour' states Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 8 Pages 599-603
Keywords fromIPMRAS
Abstract Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~7GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different 'colours'. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 822
Permanent link to this record
 

 
Author (down) Yao, Xing-Can; Wang, Tian-Xiong; Xu, Ping; Lu, He; Pan, Ge-Sheng; Bao, Xiao-Hui; Peng, Cheng-Zhi; Lu, Chao-Yang; Chen, Yu-Ao; Pan, Jian-Wei
Title Observation of eight-photon entanglement Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 225-228
Keywords fromIPMRAS
Abstract The creation of increasingly large multipartite entangled states is not only a fundamental scientific endeavour in itself, but is also the enabling technology for quantum information. Tremendous experimental effort has been devoted to generating multiparticle entanglement with a growing number of qubits. So far, up to six spatially separated single photons have been entangled based on parametric downconversion. Multiple degrees of freedom of a single photon have been exploited to generate forms of hyper-entangled states. Here, using new ultra-bright sources of entangled photon pairs, an eight-photon interferometer and post-selection detection, we demonstrate for the first time the creation of an eight-photon Schrödinger cat state with genuine multipartite entanglement. The ability to control eight individual photons represents a step towards optical quantum computation, and will enable new experiments on, for example, quantum simulation, topological error correction and testing entanglement dynamics under decoherence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 784
Permanent link to this record
 

 
Author (down) Xu, XinAn; Wong, Chee Wei
Title Quantum optics: Correlations on a chip Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue Pages 75-76
Keywords fromIPMRAS
Abstract Researchers have developed a semiconductor structure capable of supporting quantum correlations between photons and strong single-photon nonlinearities, thus paving the way for the development of chip-based devices for quantum secure communications and quantum information processing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 782
Permanent link to this record
 

 
Author (down) Wu, Ming C.
Title Optoelectronic tweezers Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon
Volume 5 Issue 6 Pages 322-324
Keywords fromIPMRAS
Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 775
Permanent link to this record
 

 
Author (down) Vishveshwara, Smitha
Title Topological qubits: A bit of both Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue Pages 450–451
Keywords fromIPMRAS
Abstract 'Standard' qubits have been implemented in diverse physical systems. Now, so-called topological qubits are coming into the limelight, and could potentially be used for decoherence-free quantum computing. Coupling these two types of qubit might enable devices that exploit the virtues of both.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 825
Permanent link to this record
 

 
Author (down) Usmani, Imam; Clausen, Christoph; Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas
Title Heralded quantum entanglement between two crystals Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 234-237
Keywords fromIPMRAS
Abstract Quantum networks must have the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater, which allows the distance barrier of direct transmission of single photons to be overcome, provided remote quantum memories can be entangled in a heralded fashion. Here, we report the observation of heralded entanglement between two ensembles of rare-earth ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of crystals doped with rare-earth ions for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 793
Permanent link to this record
 

 
Author (down) Ursin, R.; Tiefenbacher, F.; Schmitt-Manderbach, T.; Weier, H.; Scheidl, T.; Lindenthal, M.; Blauensteiner, B.; Jennewein, T.; Perdigues, J.; Trojek, P.; Ömer, B.; Fürst, M.; Meyenburg, M.; Rarity, J.; Sodnik, Z.; Barbieri, C.; Weinfurter, H.; Zeilinger, A.
Title Entanglement-based quantum communication over 144km Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 7 Pages 481-486
Keywords fromIPMRAS
Abstract Quantum entanglement is the main resource to endow the field of quantum information processing with powers that exceed those of classical communication and computation. In view of applications such as quantum cryptography or quantum teleportation, extension of quantum-entanglement-based protocols to global distances is of considerable practical interest. Here we experimentally demonstrate entanglement-based quantum key distribution over 144km. One photon is measured locally at the Canary Island of La Palma, whereas the other is sent over an optical free-space link to Tenerife, where the Optical Ground Station of the European Space Agency acts as the receiver. This exceeds previous free-space experiments by more than an order of magnitude in distance, and is an essential step towards future satellite-based quantum communication and experimental tests on quantum physics in space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 797
Permanent link to this record
 

 
Author (down) Ulhaq, A.; Weiler, S.; Ulrich, S. M.; Roßbach, R.; Jetter, M.; Michler, P.
Title Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 238-242
Keywords fromIPMRAS
Abstract Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both `single' and `cascaded' photon emission from the Mollow triplet sidebands. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ~ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 788
Permanent link to this record
 

 
Author (down) Trabesinger, Andreas
Title Quantum mechanics: Shaken foundations Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue 12 Pages 863
Keywords fromIPMRAS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 802
Permanent link to this record
 

 
Author (down) Toyabe, Shoichi; Sagawa, Takahiro; Ueda, Masahito; Muneyuki, Eiro; Sano, Masaki
Title Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 12 Pages 988-992
Keywords fromIPMRAS
Abstract In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of “information-heat engine” which converts information to energy by feedback control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 831
Permanent link to this record
 

 
Author (down) Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.
Title A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 259-264
Keywords fromIPMRAS
Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 790
Permanent link to this record
 

 
Author (down) Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G.
Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 3 Issue 625 Pages 6
Keywords fromIPMRAS
Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 768
Permanent link to this record