|   | 
Details
   web
Records
Author (down) Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G.
Title A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300604 (1 to 4)
Keywords NbN HEB mixer
Abstract A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1354
Permanent link to this record
 

 
Author (down) Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G.
Title A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type Conference Article
Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest
Volume 2 Issue Pages 751-754
Keywords waveguide NbN HEB mixers
Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.
Address Philadelphia, PA, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1516
Permanent link to this record
 

 
Author (down) Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory
Title A digital terahertz power meter based on an NbN thin film Type Abstract
Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 170
Keywords waveguide NbN HEB mixers
Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1366
Permanent link to this record
 

 
Author (down) Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.
Volume 9 Issue 9 Pages 366-368
Keywords waveguide NbN HEB mixers
Abstract A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1565
Permanent link to this record
 

 
Author (down) Tiulina, V.; Iomdina, E.; Goltsman, G.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Zaitsev, S.; Zernii, E.; Senin, I.
Title UVB promotes the initiation of uveitic inflammatory and changes in thehydration of the cornea in vivo Type Miscellaneous
Year 2019 Publication FEBS Open Bio Abbreviated Journal FEBS Open Bio
Volume 9 Issue S1 Pages 79
Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation
Abstract Recently, active research has been conducted in the field of terahertz (THz) scanning of human tissues for non­invasive determination of their hydration level, which haves hown high diagnostic efficiency of this technology in various pathological conditions. Recently, we have developed a laboratory model of the facility for monitoring the state of the water balance of the cornea using THz scanning in vivo, which opens up the possibility of applying this approach in ophthalmology. The aim of the work wasto compare the results of the THz scan of the cornea with its clinical changes using the example of an experimental model of the UV­ induced keratouveitis. Anexperimental study, which included a comprehensive assessment of clinical changes in the cornea of rabbits during keratouveitis induction, revealed a decrease in the stability of the tear film, pathological changes in the corneal epithelium and stroma, as well as its anatomical and optical parameters. Comparison of data obtained in the THz scan of the cornea with tears production, optical coherence tomography and confocal microscopy showed their consistency in all observation periods, which allows us to conclude that the developed laboratory setup works and the feasibility of further research to promote the corneal hydration evaluation technology in clinical practice. Acknowledgements: Research was funded by the RSF, grant number 16­15­00255.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-5463 ISBN Medium
Area Expedition Conference
Notes Poster P-01-040 Approved no
Call Number Serial 1276
Permanent link to this record