|   | 
Details
   web
Records
Author (up) Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V.
Title Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 737 Issue Pages 012032
Keywords WSi SSPD, SNSPD, NEP
Abstract We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1235
Permanent link to this record
 

 
Author (up) Semenov, A. D.; Hübers, H.-W.; Gol’tsman, G. N.; Smirnov, K.
Title Superconducting quantum detector for astronomy and X-ray spectroscopy Type Conference Article
Year 2002 Publication Proc. Int. Workshop on Supercond. Nano-Electronics Devices Abbreviated Journal Proc. Int. Workshop on Supercond. Nano-Electronics Devices
Volume Issue Pages 201-210
Keywords NbN SSPD, SNSPD, SQD, superconducting quantum detectors, X-ray spectroscopy
Abstract We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.
Address Naples, Italy
Corporate Author Thesis
Publisher Springer Place of Publication Boston, MA Editor Pekola, J.; Ruggiero, B.; Silvestrini, P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4615-0737-6 Medium
Area Expedition Conference International Workshop on Superconducting Nano-Electronics Devices, May 28-June 1, 2001
Notes Approved no
Call Number semenov2002superconducting Serial 1525
Permanent link to this record
 

 
Author (up) Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W.
Title Ultimate performance of a superconducting quantum detector Type Journal Article
Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.
Volume 21 Issue 3 Pages 171-178
Keywords NbN SSPD, SNSPD
Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 534
Permanent link to this record
 

 
Author (up) Semenov, Alexei D; Gol'tsman, Gregory N; Sobolewski, Roman
Title Hot-electron effect in superconductors and its applications for radiation sensors Type Journal Article
Year 2002 Publication Superconductor Science and Technology Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 4 Pages R1-R16
Keywords HEB, SSPD
Abstract The paper reviews the main aspects of nonequilibrium hot-electron phenomena in superconductors and various theoretical models developed to describe the hot-electron effect. We discuss implementation of the hot-electron avalanche mechanism in superconducting radiation sensors and present the most successful practical devices, such as terahertz mixers and direct intensity detectors, for far-infrared radiation. Our presentation also includes the novel approach to hot-electron quantum detection implemented in superconducting x-ray to optical photon counters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 416
Permanent link to this record
 

 
Author (up) Shcherbatenko, M. L.; Elezov, M. S.; Goltsman, G. N.; Sych, D. V.
Title Sub-shot-noise-limited fiber-optic quantum receiver Type Journal Article
Year 2020 Publication Phys. Rev. A Abbreviated Journal Phys. Rev. A
Volume 101 Issue 3 Pages 032306 (1 to 5)
Keywords SSPD mixer, SNSPD
Abstract We experimentally demonstrate a quantum receiver based on the Kennedy scheme for discrimination between two phase-modulated weak coherent states. The receiver is assembled entirely from standard fiber-optic elements and operates at a conventional telecom wavelength of 1.55 μm. The local oscillator and the signal are transmitted through different optical fibers, and the displaced signal is measured with a high-efficiency superconducting nanowire single-photon detector. We show the discrimination error rate is two times below that of a shot-noise-limited receiver with the same system detection efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1268
Permanent link to this record