|   | 
Details
   web
Records
Author (up) Baubert, J.; Salez, M.; Merkel, H.; Pons, P.; Cherednichenko, S.; Lecomte, B.; Drakinsky, V.; Goltsman, G.; Leone, B.
Title IF gain bandwidth of membrane-based NbN hot electron bolometers for SHAHIRA Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 507-510
Keywords NbN HEB mixers, applications
Abstract SHAHIRA (Submm Heterodyne Array for HIgh-speed Radio Astronomy) is a project supported by the European Space Agency (ESA) and is designed to fly on the SOFIA observatory. A quasi-optic design has been chosen for 2.5/2.7 THz and 4.7 THz, for hydroxyde radical OH, deuterated hydrogen HD and neutral atomic oxygen OI lines observations. Hot electron bolometers (HEBs) have been processed on 1 /spl mu/m thick SiO/sub 2//Si/sub 3/N/sub 4/ stress-less membranes. In this paper we analyse the intermediate frequency (IF) gain bandwidth from the theoretical point of view, and compare it to measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1468
Permanent link to this record
 

 
Author (up) Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J.
Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Journal Article
Year 2011 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 107 Issue 17 Pages 4
Keywords NbN thin film, energy gap dynamics
Abstract Using time-domain terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, λ=1.1±0.1, which is in excellent agreement with theoretical estimates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 641
Permanent link to this record
 

 
Author (up) Beck, M.; Rousseau, I.; Klammer, M.; Leiderer, P.; Mittendorff, M.; Winnerl, S.; Helm, M.; Gol'tsman, G.N.; Demsar, J.
Title Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses Type Journal Article
Year 2013 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 110 Issue 26 Pages 267003 (1 to 5)
Keywords NbN thin films, energy gap
Abstract Observations of radiation-enhanced superconductivity have thus far been limited to a few type-I superconductors (Al, Sn) excited at frequencies between the inelastic scattering rate and the superconducting gap frequency 2Delta/h. Utilizing intense, narrow-band, picosecond, terahertz pulses, tuned to just below and above 2Delta/h of a BCS superconductor NbN, we demonstrate that the superconducting gap can be transiently increased also in a type-II dirty-limit superconductor. The effect is particularly pronounced at higher temperatures and is attributed to radiation induced nonthermal electron distribution persisting on a 100 ps time scale.
Address Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes PMID:23848912 Approved no
Call Number Serial 1370
Permanent link to this record
 

 
Author (up) Bell, M.; Kaurova, N.; Divochiy, A.; Gol'tsman, G.; Bird, J.; Sergeev, A.; Verevkin, A.
Title On the nature of resistive transition in disordered superconducting nanowires Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 267-270
Keywords SSPD, SNSPD
Abstract Hot-electron single-photon counters based on long superconducting nanowires are starting to become popular in optical and infrared technologies due to their ultimately high sensitivity and very high response speed. We investigate intrinsic fluctuations in long NbN nanowires in the temperature range of 4.2 K-20 K, i.e. above and below the superconducting transition. These fluctuations are responsible for fluctuation resistivity and also determine the noise in practical devices. Measurements of the fluctuation resistivity were performed at low current densities and also in external magnetic fields up to 5 T. Above the BCS critical temperature T co the resistivity is well described by the Aslamazov-Larkin (AL) theory for two-dimensional samples. Below T co the measured resistivity is in excellent agreement with the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory developed for one-dimensional superconductors. Despite that our nanowires of 100 nm width are two-dimensional with respect to the coherence length, our analysis shows that at relatively low current densities the one-dimensional LAMH mechanism based on thermally induced phase slip centers dominates over the two-dimensional mechanism related to unbinding of vortex-antivortex pairs below the Berezinskii-Kosterlitz-Thouless transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1247
Permanent link to this record
 

 
Author (up) Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol'tsman, G.
Title One-dimensional resistive states in quasi-two-dimensional superconductors Type Journal Article
Year 2007 Publication arXiv:0709.0709v1 [cond-mat.supr-con] Abbreviated Journal
Volume Issue Pages 1-11
Keywords
Abstract We investigate competition between one- and two-dimensional topological excitations – phase slips and vortices – in formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature T(C0). The widths w = 100 nm of our ultrathin NbN samples is substantially larger than the Ginzburg-Landau coherence length ξ = 4nm and the fluctuation resistivity above T(C0) has a two-dimensional character. However, our data shows that the resistivity below T(C0) is produced by one-dimensional excitations, – thermally activated phase slip strips (PSSs) overlapping the sample cross-section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current/temperature variations. Measuring the resistivity within seven orders of magnitude, we find that the quantum phase slips can only be essential below this level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 948
Permanent link to this record