|   | 
Details
   web
Records
Author (up) Matyushkin, Y. E.; Gayduchenko, I. A.; Moskotin, M. V.; Goltsman, G. N.; Fedorov, G. E.; Rybin, M. G.; Obraztsova, E. D.
Title Graphene-layer and graphene-nanoribbon FETs as THz detectors Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051054
Keywords field-effect transistor, FET, monolayer graphene, graphene nanoribbons
Abstract We report on detection of sub-THz radiation (129-430 GHz) using graphene based asymmetric field-effect transistor (FET) structures with different channel geometry: monolayer graphene, graphene nanoribbons. In all devices types we observed the similar trends of response on sub-THz radiation. The response fell with increasing frequency at room temperature, but increased with increasing frequency at 77 K. Our calculations show that the change in the trend of the frequency dependence at 77 K is associated with the appearance of plasma waves in the graphene channel. Unusual properties of p-n junctions in graphene are highlighted using devices of special geometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1300
Permanent link to this record
 

 
Author (up) Matyushkin, Y.; Danilov, S.; Moskotin, M.; Belosevich, V.; Kaurova, N.; Rybin, M.; Obraztsova, E. D.; Fedorov, G.; Gorbenko, I.; Kachorovskii, V.; Ganichev, S.
Title Helicity-sensitive plasmonic terahertz interferometer Type Journal Article
Year 2020 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume 20 Issue 10 Pages 7296-7303
Keywords graphene, plasmonic interferometer, radiation helicity, terahertz radiation
Abstract Plasmonic interferometry is a rapidly growing area of research with a huge potential for applications in the terahertz frequency range. In this Letter, we explore a plasmonic interferometer based on graphene field effect transistor connected to specially designed antennas. As a key result, we observe helicity- and phase-sensitive conversion of circularly polarized radiation into dc photovoltage caused by the plasmon-interference mechanism: two plasma waves, excited at the source and drain part of the transistor, interfere inside the channel. The helicity-sensitive phase shift between these waves is achieved by using an asymmetric antenna configuration. The dc signal changes sign with inversion of the helicity. A suggested plasmonic interferometer is capable of measuring the phase difference between two arbitrary phase-shifted optical signals. The observed effect opens a wide avenue for phase-sensitive probing of plasma wave excitations in two-dimensional materials.
Address CENTERA Laboratories, Institute of High Pressure Physics, PAS, 01-142 Warsaw, Poland
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:32903004 Approved no
Call Number Serial 1781
Permanent link to this record
 

 
Author (up) Matyushkin, Y.; Kaurova, N.; Voronov, B.; Goltsman, G.; Fedorov, G.
Title On chip carbon nanotube tunneling spectroscopy Type Journal Article
Year 2020 Publication Fullerenes, Nanotubes and Carbon Nanostructures Abbreviated Journal
Volume 28 Issue 1 Pages 50-53
Keywords carbon nanotubes, CNT, scanning tunneling microscope, STM
Abstract We report an experimental study of the band structure of individual carbon nanotubes (SCNTs) based on investigation of the tunneling density of states, i.e. tunneling spectroscopy. A common approach to this task is to use a scanning tunneling microscope (STM). However, this approach has a number of drawbacks, to overcome which, we propose another method – tunneling spectroscopy of SCNTs on a chip using a tunneling contact. This method is simpler, cheaper and technologically advanced than the STM. Fabrication of a tunnel contact can be easily integrated into any technological route, therefore, a tunnel contact can be used, for example, as an additional tool in characterizing any devices based on individual CNTs. In this paper we demonstrate a simple technological procedure that results in fabrication of good-quality tunneling contacts to carbon nanotubes.
Address
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number doi:10.1080/1536383X.2019.1671365 Serial 1269
Permanent link to this record
 

 
Author (up) Matyushkin, Yakov; Fedorov, Georgy; Moskotin, Maksim; Danilov, Sergey; Ganichev, Sergey; Goltsman, Gregory
Title Gate-mediated helicity sensitive detectors of terahertz radiation with graphene-based field effect transistors Type Abstract
Year 2020 Publication Graphene and 2dm Virt. Conf. Abbreviated Journal Graphene and 2DM Virt. Conf.
Volume Issue Pages
Keywords single layer graphene, SLG, CVD, plasmons, FET
Abstract Closing of the so-called terahertz gap results in an increased demand for optoelectronic devices operating in the frequency range from 0.1 to 10 THz. Active plasmonic in field effect devices based on high-mobility two-dimensional electron gas (2DEG) opens up opportunities for creation of on-chip spectrum [1] and polarization [2] analysers. Here we show that single layer graphene (SLG) grown using CVD method can be used for an all-electric helicity sensitive polarization broad analyser of THz radiation. Allourresults show plasmonic nature of response. Devices are made in a configuration ofa field-effect transistor (FET) with a graphene channel that has a length of 2 mkm and a width of 5.5 mkm. Response of opposite polarity to clockwise and anticlockwise polarized radiation is due to special antenna design (see Fig.1c) as follow works [2,3]. Our approaches can be extrapolated to other 2D materials and used as a tool to characterize plasmonic excitations in them. [1]Bandurin, D. A., etal.,Nature Communications, 9(1),(2018),1-8.[2]Drexler, C.,etal.,Journal of Applied Physics, 111(12),(2012),124504.[3]Gorbenko, I. V.,et al.,physica status solidi (RRL)–Rapid Research Letters, 13(3),(2019),1800464.
Address Grenoble, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Graphene and 2dm Virtual Conference & Expo
Notes Approved no
Call Number Serial 1743
Permanent link to this record
 

 
Author (up) Mehdi, I.; Gol'tsman, G.; Putz, P.
Title Introduction to the mini-special-issue on the 25th international symposium on space terahertz technology (ISSTT) Type Miscellaneous
Year 2015 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 5 Issue 1 Pages 14-15
Keywords
Abstract THE 25th International Symposium on Space Terahertz Technology (ISSTT) was held in Moscow, Russia, between April 27–30, 2014. The conference was organized by Moscow State Pedagogical University and the Higher School of Economics (National Research University) and Chaired by Professor Gregory Gol'tsman of Moscow State Pedagogical University. The conference was attended by roughly 150 participants from 15 countries. The technology covered by ISSTT includes detectors, devices, circuits and systems in various areas of THz science and technology. Each year this symposium brings together the global THz space science technology community, and as such, emphasizes the broad international collaboration that is required to execute these large complicated instrument programs that dominate this field. However, talks covering technologies for balloon, aircraft, and ground-based telescopes were also presented.

In this special section of IEEE Transactions on Terahertz Science and Technology, we include eight expanded papers from the 25th ISSTT symposium. The papers range from development of SIS mixers to optical adjustment systems for radio telescopes. The 26th ISSTT will be held in Boston, MA, USA, during March 16–18, 2015. Researchers and scientist involved in THz research are invited to attend this symposium (more details are at http://www.cfa.harvard.edu/events/2015/isstt2015/).

You can access the full list of papers presented at the ISSTT symposia from the National Radio Astronomy Observatory website: http://www.nrao.edu/meetings/isstt/index.shtml

Yours sincerely
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1353
Permanent link to this record