toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H. W.; Svechnikov, S.; Voronov, B.; Gol'tsman, G.; Wang, Z. url  openurl
  Title Hot electron bolometric mixers based on NbN films deposited on MgO substrates Type Conference Article
  Year 1999 Publication Inst. Phys. Conf. Ser. Abbreviated Journal Inst. Phys. Conf. Ser.  
  Volume 167 Issue Pages 687-690  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 4th Europ. Conf. on Appl. Superconductivity, Inst. Phys. Conf. Ser.  
  Notes Approved no  
  Call Number Serial 297  
Permanent link to this record
 

 
Author (down) Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Hübers, H.-W.; Schubert, J.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Conference Article
  Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 238-246  
  Keywords NbN HEB mixers  
  Abstract The performance of NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1- 0.2 gm, the width is 1-2 gm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power required is less than 500 nW at the receiver input. First results on the spiral antenna polarization measurements are reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1575  
Permanent link to this record
 

 
Author (down) Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E. url  doi
openurl 
  Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
  Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 73 Issue 19 Pages 2814-2816  
  Keywords NbN HEB mixers, noise temperature, local oscillator power  
  Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 911  
Permanent link to this record
 

 
Author (down) Yagoubov, P.; Gol'tsman, G.; Voronov, B.; Svechnikov, S.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekström, H.; Semenov, A.; Gousev, Yu.; Renk, K. url  openurl
  Title Quasioptical phonon-cooled NbN hot-electron bolometer mixer at THz frequencies Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 303-317  
  Keywords NbN HEB mixers  
  Abstract In our experiments we tested phonon-cooled hot-electron bolometer (HEB) quasioptical mixer based on spiral antenna designed for 0.5-1.2 THz frequency band and fabricated on sapphire, Si-coated sapphire and high resistivity silicon substrates. HEB devices were produced from thin superconducting NbN film 3.5-6 nm thick with the critical temperature of about 11-12 K. For these devices we achieved the receiver noise temperature T R (DSB) = 3000 K in the 500-700 GHz frequency range and an IF bandwidth of 3-4 GHz. Prelimanary measurements at frequencies 1-1.2 THz resulted the receiver noise temperature about 9000 K (DSB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1614  
Permanent link to this record
 

 
Author (down) Yagoubov, P. L.; Hoogeveen, R. W. M.; Maurellis, A. M.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Hiibers, H.-W.; Richter, H.; Semenov, A.; Gol'tsman, G.; Voronov, B.; Koshelets, V.; Shitov, S.; Ellison, B.; Kerridge, B.; Matheson, D.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J. url  openurl
  Title TELIS — development of a new balloon borne THz/submm heterodyne limb sounder Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 204-214  
  Keywords limb-sounder, TELIS  
  Abstract We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth's atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organisation of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) in the United Kingdom and the Deutschen Zentrum far Luft- und Raumfahrt (DLR) in Germany (lead institute). TELIS will utilise state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument capable of providing broad spectral coverage, high spectral resolution and long flight duration (-24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constituents such as OH, HO,, C10, BrO together will longer lived constituents such as 0 3 , HCL and N 2 0. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the University of Karlsruhe, Germany. MIPAS-B will provide simultaneous and complementary spectral measurements over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spacebome instruments planned by the European Space Agency (ESA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1499  
Permanent link to this record
 

 
Author (down) Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gubkina, T. O.; Semash, V. D. url  openurl
  Title Superconductive properties of ultrathin NbN films on different substrates Type Journal Article
  Year 1994 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 7 Issue 6 Pages 1097-1102  
  Keywords NbN films  
  Abstract A study was made on dependence of surface resistance, critical temperature and width of superconducting transition on application temperature and thickness of NbN films, which varied within the range of 3-10 nm. Plates of sapphire, fused and monocrystalline quartz, MgO, as well as Si and silicon oxide were used as substrates. NbN films with 160 μθ·cm specific resistance and 16.5 K (Tc) critical temperature were obtained on sapphire substrates. Intensive growth of ΔTc was noted for films, applied on fused quartz, with increase of precipitation temperature. This is explained by occurrence of high tensile stresses in NbN films, caused by sufficient difference of thermal coefficients of expansion of NbN and quartz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0131-5366 ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводниковые свойства ультратонких пленок NbN на различных подложках Approved no  
  Call Number Serial 1631  
Permanent link to this record
 

 
Author (down) Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Zorin, M. A.; Sejdman, L. A.; Semenov, A. D. url  openurl
  Title Picosecond range detector base on superconducting niobium nitride film sensitive to radiation in spectral range from millimeter waves up to visible light Type Journal Article
  Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 5 Issue 5 Pages 955-960  
  Keywords NbN HEB detectors  
  Abstract Fast-operating picosecond detector of electromagnetical radiation is developed on the basis of fine superconducting film of niobium nitride with high sensitivity within spectral range from millimetric waves up to visible light. Detector sensitive element represents structure covering narrow parallel strips with micron sizes included in the rupture of microstrip line. Detecting ability of the detector and time constant measured using amplitude-simulated radiation of reverse wave tubes and pulse radiation of picosecond gas and solid-body lasers, constitute D*≅1010 W-1·cm·Hz-1/2 and τ≤5 ps respectively, at 10 K temperature. The expected value of time constant of the detector at 10 K obtained via extrapolation of directly measured dependence that is, τ ∝ τ-1, constitutes 20 ps. Experimental data demonstrate that detection mechanism is linked with electron heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0131-5366 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1670  
Permanent link to this record
 

 
Author (down) Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N. url  openurl
  Title Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-111  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1528  
Permanent link to this record
 

 
Author (down) Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G. url  openurl
  Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
  Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no  
  Call Number Serial 1751  
Permanent link to this record
 

 
Author (down) Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: