toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol’tsman, G. url  doi
openurl 
  Title Time domain analysis of coherent terahertz synchrotron radiation Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 87 Issue 18 Pages 184103 (1 to 3)  
  Keywords NbN HEB mixers, applications  
  Abstract The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ∼1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (∼5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1457  
Permanent link to this record
 

 
Author (down) Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
  Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology  
  Volume 42 Issue 1 Pages 41-47  
  Keywords NbN HEB mixers, anti-reflection coating  
  Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1548  
Permanent link to this record
 

 
Author (down) Hübers, H.-W.; Semenov, A. D.; Richter, H.; Schubert, J.; Hadjiloucas, S.; Bowen, J. W.; Gol'tsman, G.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Antenna pattern of the quasi-optical hot-electron bolometric mixer at terahertz frequencies Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 286-296  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, CA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 323  
Permanent link to this record
 

 
Author (down) Hübers, H. W.; Pavlov, S. G.; Semenov, A. D.; Tredicucci, A.; Köhler, R.; Mahler, L.; Beere, H. E.; Linfield, E. H.; Ritchie, D. A. openurl 
  Title Investigation of a 2.5 THz quantum cascade laser as local oscillator Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 18  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ qc_lasers_huebers Serial 366  
Permanent link to this record
 

 
Author (down) Hoogeveen, R. W. M.; Yagoubov, P. A.; Maurellis, A.; Koshelets, V. P.; Shitov, S. V.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Huebers, H.-W.; Richter, H.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Ellison, B.N.; Kerridge, B.J.; Matheson, D. N.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J. url  doi
openurl 
  Title New cryogenic heterodyne techniques applied in TELIS: the balloonborne THz and submillimeter limb sounder for atmospheric research Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5152 Issue Pages 347-355  
  Keywords TELIS, limb sounder, heterodyne detection, terahertz, sub millimeter, cryogenic, limb sounding, balloon borne, atmospheric research  
  Abstract We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth’s atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organization of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) will utilize state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument cpaable of providing broad spectral coverage, high spectral resolution and long flight duration ( 24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constitutenets sucyh as OH, HO2, ClO, BrO togehter will onger lived constituents such as O3, HCL and N2O. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spaceborne instruments planned by the European Space Agency (ESA).  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Strojnik, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Spaceborne Remote Sensing XI  
  Notes Approved no  
  Call Number Serial 1508  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: