|   | 
Details
   web
Records
Author (down) Kramer, B.; Chen, C-C.; Volakis, J.D.
Title The development of a mini-UWB antenna Type Journal Article
Year 2004 Publication Measurement and Techniques Association Symposium Abbreviated Journal AMTA
Volume Issue Pages 6
Keywords optical antennas; Ultra Wide Band; Spiral Antenna, Dielectric Loading
Abstract There is a great interest in the automotive and military sectors for small and broadband antennas that meet modern communication needs. These needs require ultra-wide bandwidth (>10:1) UWB antennas, such as the spiral antenna. However, the physical size at the low-frequency end typically becomes too large for practical applications. To reduce the size of the antenna, miniaturization techniques must be employed such as the use of high-contrast dielectric materials. Size reduction using high-contrast materials has been demonstrated for narrowband antennas, such as patch antennas, but not for broadband antennas to our knowledge. Therefore, the concept of miniaturizing a broadband spiral antenna using dielectric materials will be investigated experimentally and numerically.Issues that arise from dielectric loading such as impedance reduction will also be addressed. It will be shown using the results from these studies that there are practical limitations to the amount of miniaturization which can be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 751
Permanent link to this record
 

 
Author (down) Kovalyuk, V.; Kahl, O.; Ferrari, S.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title On-chip single-photon spectrometer for visible and infrared wavelength range Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051045
Keywords single-photon spectrometer
Abstract Here we show our latest progress in the field of a single-photon spectrometer for the visible and infrared wavelengths ranges implementation. We consider three different on-chip approaches: a coherent spectrometer with a low power of the heterodyne, a coherent spectrometer with a high power of the heterodyne, and an eight-channel single-photon spectrometer for direct detection. Along with high efficiency, spectrometers show high detection efficiency and temporal resolution through the use of waveguide integrated superconducting nanowire single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1197
Permanent link to this record
 

 
Author (down) Knee, George C.; Simmons, Stephanie; Gauger, Erik M.; Morton, John J. L.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei M.; Thewalt, Mike L. W.; Briggs, G. Andrew D.; Benjamin, Simon C.
Title Violation of a Leggett–Garg inequality with ideal non-invasive measurements Type Journal Article
Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 3 Issue 606 Pages 6
Keywords fromIPMRAS
Abstract The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 767
Permanent link to this record
 

 
Author (down) Kinch, M. A.; Wan, C.-F., Beck, J. D.
Title 1/f noise in HgCdTe photodiodes Type Journal Article
Year 2005 Publication J. Electron. Mater. Abbreviated Journal
Volume 34 Issue 6 Pages 928-932
Keywords HgCdTe
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 468
Permanent link to this record
 

 
Author (down) Kim, Yong-Su; Lee, Jong-Chan; Kwon, Osung; Kim, Yoon-Ho
Title Protecting entanglement from decoherence using weak measurement and quantum measurement reversal Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 2 Pages 117-120
Keywords fromIPMRAS
Abstract Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing, quantum cryptography, quantum teleportation and quantum metrology. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 815
Permanent link to this record