toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N. doi  openurl
  Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages 645-648  
  Keywords waveguide NbN HEB mixers  
  Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 720  
Permanent link to this record
 

 
Author (down) Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 21 Issue 3 Pages 628-631  
  Keywords waveguide NbN HEB mixers  
  Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 719  
Permanent link to this record
 

 
Author (down) Lobanov, Y.; Tong, C.; Blundell, R.; Gol'tsman, G. url  openurl
  Title A study of direct detection effect on the linearity of hot electron bolometer mixers Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages 282-287  
  Keywords HEB mixer, direct detection effect  
  Abstract We have performed a study of how direct detection affects the linearity and hence the calibration of an HEB mixer. Two types of waveguide HEB devices have been used: a 0.8 THz HEB mixer and a 1.0 THz HEB mixer which is ~5 times smaller than the former. Two independent experimental approaches were used. In the ΔG/G method, the conversion gain of the HEB mixer is first measured as a function of the bias current for a number of bias voltages. At each bias setting, we carefully measure the change in the operating current when the input loads are switched. From the measured data, we can derive the expected difference in gain between the hot and cold loads. In the second method (injection method [1]), the linearity of the HEB mixer is independently measured by injecting a modulated signal for different input load temperatures. The results of both approaches confirm that there is gain compression in the operation of HEB mixers. Based on the results of our measurements, we discuss the impact of direct detection effects on the operation of HEB mixers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 724  
Permanent link to this record
 

 
Author (down) Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N. doi  openurl
  Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300704 (1 to 4)  
  Keywords HEB mixer, IR, optical antenna  
  Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 952  
Permanent link to this record
 

 
Author (down) Lobanov, Y. V.; Tong, Cheuk-Yu E.; Hedden, A. S.; Blundell, R.; Gol'tsman, G. N. openurl 
  Title Microwave-assisted슠measurement슠of the슠frequency슠response슠of슠terahertz슠HEB슠mixers슠with a슠fourier슠transform슠spectrometer Type Conference Article
  Year 2010 Publication 21st International Symposium on Space Terahertz Technology Abbreviated Journal 21st ISSTT  
  Volume Issue Pages 420-423  
  Keywords HEB mixer  
  Abstract We describe a novel method of operation of the HEB direct detector for use with a Fourier Transform Spectrometer. Instead of elevating the bath temperature, we have measured the RF response of waveguide HEB mixers by applying microwave radiation to select appropriate bias conditions. In our experiment, a microwave signal is injected into the HEB mixer via its IF port. By choosing an appropriate injection level, the device can be operated close to the desired operating point. Furthermore, we have shown that both thermal biasing and microwave injection can reproduce the same spectral response of the HEB mixer. However, with the use of microwave injection, there is no need to wait for the mixer to reach thermal equilibrium, so characterisation can be done in less time. Also, the liquid helium consumption for our wet cryostat is also reduced. We have demonstrated that the signalto-noise ratio of the FTS measurements can be improved with microwave injection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 725  
Permanent link to this record
 

 
Author (down) Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Optical mixing in a patterned YBa2Cu3O7-δ thin film Type Journal Article
  Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 65 Issue 26 Pages 3398-3400  
  Keywords YBCO HTS HEB mixer, bandwidth  
  Abstract Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 251  
Permanent link to this record
 

 
Author (down) Kroug, M.; Yagoubov, P.; Gol'tsman, G.; Kollberg, E. url  openurl
  Title NbN quasioptical phonon cooled hot electron bolometric mixers at THz frequencies Type Conference Article
  Year 1997 Publication Inst. Phys. Conf. Ser. Abbreviated Journal Inst. Phys. Conf. Ser.  
  Volume 1 Issue Pages 405-408  
  Keywords NbN HEB mixers  
  Abstract  
  Address Veldhoven  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-3248 ISBN Medium  
  Area Expedition Conference 3rd Eur. Conf. on Applied Superconductivity  
  Notes Approved no  
  Call Number Serial 1600  
Permanent link to this record
 

 
Author (down) Kroug, M.; Cherednichenko, S.; Merkel, H.; Kollberg, E.; Voronov, B.; Gol'tsman, G.; Hübers, H. W.; Richter, H. doi  openurl
  Title NbN hot electron bolometric mixers for terahertz receivers Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages 962-965  
  Keywords NbN HEB mixers  
  Abstract Sensitivity and gain bandwidth measurements of phonon-cooled NbN superconducting hot-electron bolometer mixers are presented. The best receiver noise temperatures are: 700 K at 1.6 THz and 1100 K at 2.5 THz. Parylene as an antireflection coating on silicon has been investigated and used in the optics of the receiver. The dependence of the mixer gain bandwidth (GBW) on the bias voltage has been measured. Starting from low bias voltages, close to operating conditions yielding the lowest noise temperature, the GBW increases towards higher bias voltages, up to three times the initial value. The highest measured GBW is 9 GHz within the same bias range the noise temperature increases by a factor of two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 312  
Permanent link to this record
 

 
Author (down) Kroug, M.; Cherednichenko, S.; Choumas, M.; Merkel, H.; Kollberg, E.; Hübers, H.-W.; Richter, H.; Loudkov, D.; Voronov, B.; Gol'Tsman, G. url  openurl
  Title HEB quasi-optical heterodyne receiver for THz frequencies Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 244-252  
  Keywords HEB mixer, NbN, MgO, conversion gain bandwidth, noise temperature  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, CA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 319  
Permanent link to this record
 

 
Author (down) Krause, S.; Mityashkin, V.; Antipov, S.; Gol’tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudziński, M. url  doi
openurl 
  Title Reduction of phonon escape time for nbn hot electron bolometers by using gan buffer layers Type Journal Article
  Year 2017 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal IEEE Trans. Terahertz Sci. Technol.  
  Volume 7 Issue 1 Pages 53-59  
  Keywords NbN HEB mixer  
  Abstract In this paper, we investigated the influence of the GaN buffer layer on the phonon escape time of phonon-cooled hot electron bolometers (HEBs) based on NbN material and compared our findings to conventionally employed Si substrate. The presented experimental setup and operation of the HEB close to the critical temperature of the NbN film allowed for the extraction of phonon escape time in a simplified manner. Two independent experiments were performed at GARD/Chalmers and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. By fitting the normalized IF measurement data to the heat balance equations, the escape time as a fitting parameter has been deduced and amounts to 45 ps for the HEB based on Si substrate as in contrast to a significantly reduced escape time of 18 ps for the HEB utilizing the GaN buffer layer under the assumption that no additional electron diffusion has taken place. This study indicates a high phonon transmissivity of the NbN-to-GaN interface and a prospective increase of IF bandwidth for HEB made of NbN on GaN buffer layers, which is desirable for future THz HEB heterodyne receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3446 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1330  
Permanent link to this record
 

 
Author (down) Korneev, A.; Finkel, M.; Maslennikov, S.; Korneeva, Yu.; Florya, I.; Tarkhov, M.; Elezov, M.; Ryabchun, S.; Tretyakov, I.; Isupova, A.; Voronov, B.; Goltsman, G. openurl 
  Title Superconducting NbN terahertz detectors and infrared photon counters Type Journal Article
  Year 2010 Publication Вестник НГУ. Серия: физ. Abbreviated Journal Вестник НГУ. Серия: физ.  
  Volume 5 Issue 4 Pages 68-72  
  Keywords HEB; HEB mixer  
  Abstract We present our recent achievements in the development of sensitive and ultrafast thin-film superconducting sensors: hot-electron bolometers (HEB), HEB-mixers for terahertz range and infrared single-photon counters. These sensors have already demonstrated a performance that makes them devices-of-choice for many terahertz and optical applications. Keywords: Hot electron bolometer mixers, infrared single-photon detectors, superconducting device fabrication, superconducting NbN films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1818-7994 ISBN Medium  
  Area Expedition Conference  
  Notes УДК 538.9 Approved no  
  Call Number RPLAB @ gujma @ Serial 708  
Permanent link to this record
 

 
Author (down) Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Stability of heterodyne terahertz receivers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 6 Pages 064904 (1 to 9)  
  Keywords NbN HEB mixers  
  Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1444  
Permanent link to this record
 

 
Author (down) Kollberg, Erik L.; Gershenzon, E.; Goltsman, G.; Yngvesson, K. S. url  openurl
  Title Hot electron mixers, the potential competition Type Conference Article
  Year 1992 Publication Proc. ESA Symp. on Photon Detectors for Space Instrumentation Abbreviated Journal Proc. ESA Symp. on Photon Detectors for Space Instrumentation  
  Volume Issue Pages 201-206  
  Keywords HEB mixers  
  Abstract There is an urgent need in radio astronomy for low noise heterodyne receivers for frequencies above about 500 GHz. It is not certain that mixers based on superconducting quasiparticle tunnelling (SIS mixers) may turn out to be the answer to this need. In order to try to find an alternative way for realizing low noise heterodyne receivers for submillimeter waves, so called hot electron bolometric effects for mixing are now being investigated. Two basically different approaches are tried, one based on semiconductors and one on superconductors. Both methods are briefly discussed in this overview paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ESA Symposium on Photon Detectors for Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1667  
Permanent link to this record
 

 
Author (down) Klapwijk, T. M.; Semenov, A. V. url  doi
openurl 
  Title Engineering physics of superconducting hot-electron bolometer mixers Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages 627-648  
  Keywords HEB mixers  
  Abstract Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1292  
Permanent link to this record
 

 
Author (down) Klapwijk, T. M.; Barends, R.; Gao, J. R.; Hajenius, M.; Baselmans, J. J. A. openurl 
  Title Improved superconducting hot-electron bolometer devices for the THz range Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages 129-139  
  Keywords HEB mixer distributed model, numerical model  
  Abstract Improved and reproducible heterodyne mixing (noise temperatures of 950 K at 2.5 THz) has been realized with NbN based hot-electron superconducting devices with low contact resistances. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, has been used to understand the physical conditions during the mixing process. We find that the mixing is predominantly due to the exponential rise of the local resistivity as a function of electron temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Invited talk, Recommended by Klapwijk Approved no  
  Call Number Serial 912  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: