toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Khabibullin, R. A.; Shchavruk, N. V.; Smirnov, K. V.; Silaev, A. A. url  doi
openurl 
  Title Characterization of the THz quantum cascade laser using fast superconducting hot electron bolometer Type Journal Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 04004 (1 to 2)  
  Keywords NbN HEB, QCL  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference 3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)  
  Notes Approved no  
  Call Number Serial 1808  
Permanent link to this record
 

 
Author (down) Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
  Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 15 Issue 12 Pages 1689-1692  
  Keywords NbN SSPD, SNSPD, QE, jitter, dark counts  
  Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1533  
Permanent link to this record
 

 
Author (down) Lindgren, M.; Currie, M.; Zeng, W.-S.; Sobolewski, R.; Cherednichenko, S.; Voronov, B.; Gol'tsman, G. N. url  doi
openurl 
  Title Picosecond response of a superconducting hot-electron NbN photodetector Type Journal Article
  Year 1998 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.  
  Volume 6 Issue 7-9 Pages 423-428  
  Keywords NbN SSPD, SNSPD  
  Abstract The ps optical response of ultrathin NbN photodetectors has been studied by electro-optic sampling. The detectors were fabricated by patterning ultrathin (3.5 nm thick) NbN films deposited on sapphire by reactive magnetron sputtering into either a 5×10 μm2 microbridge or 25 1 μm wide, 5 μm long strips connected in parallel. Both structures were placed at the center of a 4 mm long coplanar waveguide covered with Ti/Au. The photoresponse was studied at temperatures ranging from 2.15 K to 10 K, with the samples biased in the resistive (switched) state and illuminated with 100 fs wide laser pulses at 395 nm wavelength. At T=2.15 K, we obtained an approximately 100 ps wide transient, which corresponds to a NbN detector response time of 45 ps. The photoresponse can be attributed to the nonequilibrium electron heating effect, where the incident radiation increases the temperature of the electron subsystem, while the phonons act as the heat sink. The high-speed response of NbN devices makes them an excellent choice for an optoelectronic interface for superconducting digital circuits, as well as mixers for the terahertz regime. The multiple-strip detector showed a linear dependence on input optical power and a responsivity =3.9 V/W.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-1807 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1584  
Permanent link to this record
 

 
Author (down) Larrey, V.; Villegier, J. -C.; Salez, M.; Miletto-Granozio, F.; Karpov, A. doi  openurl
  Title Processing and characterization of high Jc NbN superconducting tunnel junctions for THz analog circuits and RSFQ Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 9 Issue 2 Pages 3216-3219  
  Keywords RSFQ, NbN, SIS  
  Abstract A generic NbN Superconducting Tunnel Junctions (STJ) technology has been developed using conventional substrates (Si and SOI-SIMOX) for making THz spectrometers including SIS receivers and RSFQ logic gates. NbN/MgO/NbN junctions with area of 1 /spl mu/m/sup 2/, Jc of 10 kA/cm/sup 2/ and low sub-gap leakage current (Vm>25 mV) are currently obtained from room temperature sputtered multilayers followed by a post-annealing at 250/spl deg/C. Using a thin MgO buffer layer deposited underneath the NbN electrodes, ensures lower NbN surface resistance values (Rs=7 /spl mu//spl Omega/) at 10 GHz and 4 K. Epitaxial NbN [100] films on MgO [100] with high gap frequency (1.4 THz) have also been achieved under the same deposition conditions at room temperature. The NbN SIS has shown good I-V photon induced steps when LO pumped at 300 GHz. We have developed an 8 levels Al/NbN multilayer process for making 1.5 THz SIS mixers (including Al antennas) on Si membranes patterned in SOI-SIMOX. Using the planarization techniques developed at the Si-MOS CEA-LETI Facility, we have also demonstrated on the possibility of extending our NbN technology to high level RSFQ circuit integration with 0.5 /spl mu/m/sup 2/ junction area, made on large area substrates (up to 8 inches).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1081  
Permanent link to this record
 

 
Author (down) Kuznetsov, K. A.; Kornienko, V. V.; Vakhtomin, Y. B.; Pentin, I. V.; Smirnov, K. V.; Kitaeva, G. K. url  doi
openurl 
  Title Generation and detection of optical-terahertz biphotons via spontaneous parametric downconversion Type Conference Article
  Year 2018 Publication Proc. ICLO Abbreviated Journal Proc. ICLO  
  Volume Issue Pages 303  
  Keywords NbN HEB applications  
  Abstract We study spontaneous parametric downconversion (SPDC) in the strongly non-degenerate regime when the idler wave hits the terahertz range. By using the hot-electron bolometer, for the first time the SPDC-generated idler-wave photons were directly detected in the terahertz frequency range. Spectrum of corresponding signal photons was measured using standard technique by the CCD camera. Possible applications of correlated optical-terahertz biphotons are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference Laser Optics  
  Notes Approved no  
  Call Number Serial 1806  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: