toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Hosseini, M.; Campbell, G.; Sparkes, B. M.; Lam, P. K.; Buchler, B. C. openurl 
  Title Unconditional room-temperature quantum memory Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 10 Pages 794-798  
  Keywords fromIPMRAS  
  Abstract Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionizing computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80 °C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. To unambiguously verify that our memory beats the quantum no-cloning limit we employ state-independent verification using conditional variance and signal-transfer coefficients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 824  
Permanent link to this record
 

 
Author (down) Home, Jonathan openurl 
  Title Quantum entanglement: Watching correlations disappear Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 12 Pages 938-939  
  Keywords fromIPMRAS  
  Abstract Engineered decoherence enables tracking of multipartite entanglement as a quantum state decays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 832  
Permanent link to this record
 

 
Author (down) Hollenberg, Lloyd C. L. openurl 
  Title Quantum control: Through the quantum chicane Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 2 Pages 113-114  
  Keywords fromIPMRAS  
  Abstract In quantum control there is an inherent tension between high fidelity requirements and the need for speed to avoid decoherence. A direct comparison of quantum control protocols at these two extremes indicates where the sweet spot may lie.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 812  
Permanent link to this record
 

 
Author (down) Haviland, David openurl 
  Title Superconducting circuits: Quantum phase slips Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue Pages 565–566  
  Keywords fromIPMRAS  
  Abstract Coulomb interactions can cause a rapid change in the phase of the wavefunction along a very narrow superconducting system. Such a phase slip at the quantum level is now measured in a chain of Josephson junctions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 807  
Permanent link to this record
 

 
Author (down) Hanneke, D.; Home, J. P.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J. openurl 
  Title Realization of a programmable two-qubit quantum processor Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 1 Pages 13-16  
  Keywords fromIPMRAS  
  Abstract The universal quantum computer is a device capable of simulating any physical system and represents a major goal for the field of quantum information science. In the context of quantum information, `universal' refers to the ability to carry out arbitrary unitary transformations in the system's computational space. Combining arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate provides a set of gates capable of achieving universal control of any number of qubits, provided that these gates can be carried out repeatedly and between arbitrary pairs of qubits. Although gate sets have been demonstrated in several technologies, they have so far been tailored towards specific tasks, forming a small subset of all unitary operators. Here we demonstrate a quantum processor that can be programmed with 15 classical inputs to realize arbitrary unitary transformations on two qubits, which are stored in trapped atomic ions. Using quantum state and process tomography, we characterize the fidelity of our implementation for 160 randomly chosen operations. This universal control is equivalent to simulating any pairwise interaction between spin-1/2 systems. A programmable multiqubit register could form a core component of a large-scale quantum processor, and the methods used here are suitable for such a device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 801  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: