|   | 
Details
   web
Records
Author (down) Kopp, Victor I.; Churikov, Victor M.; Genack, Azriel Z.
Title Chiral-fiber gratings sense the environment Type Conference Article
Year 2008 Publication Laser Focus World Abbreviated Journal
Volume 44 Issue 6 Pages 76-79
Keywords chiral fiber gratings, chiral gratings, from chiralphotonics
Abstract The article focuses on the use of chiral fiber gratings in sensing. It discusses the production of chiral optical fibers which are created through twisting fibers. It cites experiments concerning the function of chiral-fiber grating produced by twisting optical fibers. The process and results of the experiments are also discussed in the article.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 850
Permanent link to this record
 

 
Author (down) Kooi, Jacob Willem
Title Advanced receivers for submillimeter and far infrared astronomy Type Book Whole
Year 2008 Publication University of Groningen Abbreviated Journal RUG
Volume Issue Pages
Keywords HEB, SIS, TES, NEP, noise temperature, IF bandwidth, waveguide, impedance, conversion gain, FTS, integrated array, stability, Allan variance, multi-layer antireflection coating
Abstract
Address
Corporate Author Thesis Doctoral thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-367-3653-4 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 881
Permanent link to this record
 

 
Author (down) Kawano, Yukio; Ishibashi, Koji
Title An on-chip near-field terahertz probe and detector Type Journal Article
Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon
Volume 2 Issue 10 Pages 618-621
Keywords single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications
Abstract The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1749-4885 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 570
Permanent link to this record
 

 
Author (down) Jukna, A.; Kitaygorsky, J.; Pan, D.; Cross, A.; Perlman, A.; Komissarov, I.; Sobolewski, R.; Okunev, O.; Smirnov, K.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Voronov, B.; Gol'tsman, G.
Title Dynamics of hotspot formation in nanostructured superconducting stripes excited with single photons Type Journal Article
Year 2008 Publication Acta Physica Polonica A Abbreviated Journal Acta Physica Polonica A
Volume 113 Issue 3 Pages 955-958
Keywords SSPD, SNSPD
Abstract Dynamics of a resistive hotspot formation by near-infrared-wavelength single photons in nanowire-type superconducting NbN stripes was investigated. Numerical simulations of ultrafast thermalization of photon-excited nonequilibrium quasiparticles, their multiplication and out-diffusion from a site of the photon absorption demonstrate that 1.55 μm wavelength photons create in an ultrathin, two-dimensional superconducting film a resistive hotspot with the diameter which depends on the photon energy, and the nanowire temperature and biasing conditions. Our hotspot model indicates that under the subcritical current bias of the 2D stripe, the electric field penetrates the superconductor at the hotspot boundary, leading to suppression of the stripe superconducting properties and accelerated development of a voltage transient across the stripe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1414
Permanent link to this record
 

 
Author (down) Jiang, Leaf A.; Luu, Jane X.
Title Heterodyne detection with a weak local oscillator Type Journal Article
Year 2008 Publication Appl. Opt. Abbreviated Journal Appl. Opt.
Volume 47 Issue 10 Pages 1486-1503
Keywords weak local oscillator, weak LO, photon-counting detector, photon-counting mixer, counter detector, counter mixer, PD mixer, PCD mixer
Abstract eterodyne detection in the limit of weak (a few photons) local oscillator and signal power levels has been largely neglected in the past, as authors almost always assumed that the noise was dominated by the shot noise from a strong local oscillator. We present the theory for heterodyne detection of diffuse and specular targets at arbitrary power levels, including the case where the local oscillator power is only a few photons per coherent integration period. The theory was tested with experimental results, and was found to show good agreement. We show how to interpret the power spectral density of the heterodyne signal and how to determine the optimal number of signal and local oscillator photons per coherent integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 979
Permanent link to this record
 

 
Author (down) Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S.
Title Terahertz detection in single wall carbon nanotubes Type Journal Article
Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue 3 Pages 033105
Keywords HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz
Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes NEP is not shown Approved no
Call Number Serial 566
Permanent link to this record
 

 
Author (down) Feautrier, P.; le Coarer, E.; Espiau de Lamaestre, R.; Cavalier, P.; Maingault, L.; Villégier, J-C.; Frey, L.; Claudon, J.; Bergeard, N.; Tarkhov, M.; Poizat, J-P.
Title High-speed superconducting single photon detectors for innovative astronomical applications Type Conference Article
Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue 1 Pages 10
Keywords SSPD
Abstract Superconducting Single Photon Detectors (SSPD) are now mature enough to provide extremely interesting detector performances in term of sensitivity, speed, and geometry in the visible and near infrared wavelengths. Taking advantage of recent results obtained in the Sinphonia project, the goal of our research is to demonstrate the feasibility of a new family of micro-spectrometers, called SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer), associated to an array of SSPD, the whole assembly being integrated on a monolithic sapphire substrate coupling the detectors array to a waveguide injecting the light. This unique association will create a major breakthrough in the domain of visible and infrared spectroscopy for all applications where the space and weight of the instrument is limited. SWIFTS is an innovative way to achieve very compact spectro-detectors using nano-detectors coupled to evanescent field of dielectric integrated optics. The system is sensitive to the interferogram inside the dielectric waveguide along the propagation path. Astronomical instruments will be the first application of such SSPD spectrometers. In this paper, we describes in details the fabrication process of our SSPD built at CEA/DRFMC using ultra-thin NbN epitaxial films deposited on different orientations of Sapphire substrates having state of the art superconducting characteristics. Electron beam lithography is routinely used for patterning the devices having line widths below 200 nm and down to 70 nm. An experimental set-up has been built and used to test these SSPD devices and evaluate their photon counting performances. Photon counting performances of our devices have been demonstrated with extremely low dark counts giving excellent signal to noise ratios. The extreme compactness of this concept is interesting for space spectroscopic applications. Some new astronomical applications of such concept are proposed in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 648
Permanent link to this record
 

 
Author (down) Dorenbos, S. N.; Reiger, E. M.; Perinetti, U.; Zwiller, V.; Zijlstra, T.; Klapwijk, T. M.
Title Low noise superconducting single photon detectors on silicon Type Journal Article
Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 93 Issue 13 Pages 131101
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 436
Permanent link to this record
 

 
Author (down) Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea
Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 2 Issue 5 Pages 302-306
Keywords SSPD, photon-number-resolving
Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 916
Permanent link to this record
 

 
Author (down) de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B.
Title Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 151 Issue 3-4 Pages 771-776
Keywords NbN SSPD, SNSPD, nanowires
Abstract We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1410
Permanent link to this record