toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Meledin, D.; Tong, C.-Y. E.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Measurement of intermediate frequency bandwidth of hot electron bolometer mixers at terahertz frequency range Type Journal Article
  Year 2003 Publication IEEE Microw. Wireless Compon. Lett. Abbreviated Journal IEEE Microw. Wireless Compon. Lett.  
  Volume 13 Issue 11 Pages 493-495  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a new experimental setup for measuring the IF bandwidth of superconducting hot electron bolometer mixers. In our measurement system we use a chopped hot filament as a broadband signal source, and can perform a high-speed IF scan with no loss of accuracy when compared to coherent methods. Using this technique we have measured the 3 dB IF bandwidth of hot electron bolometer mixers, designed for THz frequency operation, and made from 3-4 nm thick NbN film deposited on an MgO buffer layer over crystalline quartz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1509  
Permanent link to this record
 

 
Author (down) Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. url  openurl
  Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 65-72  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, MA, USA Editor Harvard university  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 326  
Permanent link to this record
 

 
Author (down) Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 164-167  
  Keywords NbN HEB mixer  
  Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 341  
Permanent link to this record
 

 
Author (down) Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author (down) Meledin D.; Desmaris V.; Ferm S.-E.; Fredrixon M.; Henke D.; Lapkin I.; Nyström O.; Pantaleev M.; Pavolotsky A.; Strandberg M.; Sundin E.; Belitsky V. openurl 
  Title APEX Band T2: A 1.25 – 1.39 THz Waveguide Balanced HEB Receiver Type Journal Article
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 181-185  
  Keywords  
  Abstract A waveguide 1.25–1.39 THz Hot Electron Bolometer (HEB) balanced receiver was successfully developed, characterized and installed at the Atacama Pathfinder EXperiment (APEX) telescope. The receiver employs a quadrature balanced scheme using a waveguide 90-degree 3 dB RF hybrid, HEB mixers and a 180-degree IF hybrid. The HEB mixers are based on ultrathin NbN film deposited on crystalline quartz with a MgO buffer layer. Integrated into the multi-channel APEX facility receiver (SHeFI), the results presented here demonstrate exceptional performance; a receiver noise temperature of 1000 K measured at the telescope at the center of the receiver IF band 2-4 GHz, and at an LO frequency of 1294 GHz. Stability of the receiver is fully in line with the SIS mixer bands of the SHeFI, and gives a spectroscopic Allan time of more than 200 s with a noise bandwidth of 1 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 974  
Permanent link to this record
 

 
Author (down) Mair, U.; Suttywong, N.; Hübers, H.-W.; Semenov, A. D.; Richter, H.; Wagner, G.; Birk, M. openurl 
  Title Development of 1.8 THz receiver for the TELIS instrument Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ qo_TELIS_1p8_THz Serial 364  
Permanent link to this record
 

 
Author (down) Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C. url  doi
openurl 
  Title Spectral dependency of superconducting single photon detectors Type Journal Article
  Year 2010 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 107 Issue 11 Pages 116103 (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1392  
Permanent link to this record
 

 
Author (down) Ma, Xiao-Song; Dakic, Borivoje; Naylor, William; Zeilinger, Anton; Walther, Philip openurl 
  Title Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 5 Pages 399-405  
  Keywords fromIPMRAS  
  Abstract Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest in situations that are not amenable to classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. In particular, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analogue quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles. Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating-valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us with insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pairwise quantum correlations to observe the monogamy of entanglement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 842  
Permanent link to this record
 

 
Author (down) Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm; Ilin, Konstantin; Siegel, Michael; Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory url  openurl
  Title Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors Type Abstract
  Year 2013 Publication INIS Abbreviated Journal INIS  
  Volume 46 Issue 8 Pages 1-3  
  Keywords TaN, NbN SSPD, SNSPD  
  Abstract The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1374  
Permanent link to this record
 

 
Author (down) Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W. url  doi
openurl 
  Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
  Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 89 Issue 10 Pages 104513 (1 to 7)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: