|   | 
Details
   web
Records
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Single-photonics at telecom wavelengths using nanowire superconducting single photon detectors Type Conference Article
Year 2007 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages QTuF6 (1 to 2)
Keywords SSPD, SNSPD
Abstract Novel single-photon detectors based on NbN superconducting nanostructures promise orders-of- magnitude improvement over InGaAs APDs. We demonstrate this improved performance for the first time by measuring the g(2)(τ) on single photon states produced by a quantum dot at telecom wavelength.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies
Notes Approved no
Call Number (down) Zinoni:07 Serial 1432
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number (down) Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Gol’tsman, G. N.; Smirnov, K.
Title Superconducting quantum detector for astronomy and X-ray spectroscopy Type Conference Article
Year 2002 Publication Proc. Int. Workshop on Supercond. Nano-Electronics Devices Abbreviated Journal Proc. Int. Workshop on Supercond. Nano-Electronics Devices
Volume Issue Pages 201-210
Keywords NbN SSPD, SNSPD, SQD, superconducting quantum detectors, X-ray spectroscopy
Abstract We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.
Address Naples, Italy
Corporate Author Thesis
Publisher Springer Place of Publication Boston, MA Editor Pekola, J.; Ruggiero, B.; Silvestrini, P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4615-0737-6 Medium
Area Expedition Conference International Workshop on Superconducting Nano-Electronics Devices, May 28-June 1, 2001
Notes Approved no
Call Number (down) semenov2002superconducting Serial 1525
Permanent link to this record
 

 
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N.
Title Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures Type Abstract
Year 2009 Publication Proc. Progress In Electromagnetics Research Symp. Abbreviated Journal Proc. Progress In Electromagnetics Research Symp.
Volume Issue Pages 863-864
Keywords SSPD, SNSPD
Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Moscow, Russia Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ sasha @ smirnovsession Serial 1050
Permanent link to this record
 

 
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Gol'tsman, G. N.
Title Infrared and terahertz detectors on basis of superconducting nanostructures Type Conference Article
Year 2010 Publication Microwave and Telecom. Technol. (CriMiCo), 20th Int. Crimean Conf. Abbreviated Journal
Volume Issue Pages 823-824
Keywords SSPD, SNSPD, HEB
Abstract Results of development of single-photon receiving systems of visible, infrared and terahertz range based on thin-film superconducting nanostructures are presented. The receiving systems are produced on the basis of superconducting nanostructures, which function by means of hot-electron phenomena.
Address
Corporate Author Thesis
Publisher Place of Publication Editor IEEE
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ sasha @ smirnov2010infrared Serial 1025
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N.
Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume Issue Pages 867
Keywords HEB
Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.
Address Moscow, Russia
Corporate Author Thesis
Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ sasha @ ozhegovultrafast Serial 1022
Permanent link to this record
 

 
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Quantum key distribution over 300 Type Conference Article
Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 9440 Issue Pages 1F (1 to 9)
Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD
Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Orlikovsky, A. A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Micro- and Nano-Electronics
Notes Approved no
Call Number (down) RPLAB @ sasha @ ozhegov2014quantum Serial 1048
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G.
Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum
Volume Issue Pages
Keywords PNR SSPD, SNSPD
Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no
Call Number (down) RPLAB @ sasha @ korneevsuperconducting Serial 1046
Permanent link to this record
 

 
Author Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N.
Title IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 5 Pages
Keywords SSPD, SNSPD
Abstract We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 8 pages Approved no
Call Number (down) RPLAB @ sasha @ korneevir Serial 1043
Permanent link to this record
 

 
Author Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N.
Title Superconducting single-photon detector made of MoSi film Type Journal Article
Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 27 Issue 9 Pages 095012
Keywords SSPD, SNSPD
Abstract We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ sasha @ korneeva2014superconducting Serial 1044
Permanent link to this record