|   | 
Details
   web
Records
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G.
Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type Miscellaneous
Year 2001 Publication OFCC/ICQI Abbreviated Journal OFCC/ICQI
Volume Issue Pages Pa3
Keywords NbN SSPD, SNSPD, QKD, quantum cryptography
Abstract We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.
Address Rochester, New York
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information
Notes -- from poster session. Approved no
Call Number (up) Serial 1544
Permanent link to this record
 

 
Author Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y.
Title Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors Type Journal Article
Year 2015 Publication Sci. Rep. Abbreviated Journal
Volume 5 Issue Pages 14383
Keywords SSPD, SNSPD applications, quantum key distribution, QKD
Abstract Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1104
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01004 (1 to 2)
Keywords QKD, SSPD, SNSPD
Abstract Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1327
Permanent link to this record
 

 
Author Kurochkin, V. L.; Zverev, A. V.; Kurochkin, Y. V.; Ryabtsev, I. I.; Neizvestnyi, I. G.; Ozhegov, R. V.; Gol’tsman, G. N.; Larionov, P. A.
Title Long-distance fiber-optic quantum key distribution using superconducting detectors Type Conference Article
Year 2015 Publication Proc. Optoelectron. Instrum. Abbreviated Journal Proc. Optoelectron. Instrum.
Volume 51 Issue 6 Pages 548-552
Keywords QKD, SSPD, SNSPD
Abstract This paper presents the results of experimental studies on quantum key distribution in optical fiber using superconducting detectors. Key generation was obtained on an experimental setup based on a self-compensation optical circuit with an optical fiber length of 101.1 km. It was first shown that photon polarization encoding can be used for quantum key distribution in optical fiber over a distance in excess of 300 km.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8756-6990 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1342
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 103 Issue Pages 10002 (1 to 2)
Keywords SSPD, SNSPD, QKD
Abstract Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1352
Permanent link to this record