toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gousev, Yu. P.; Gol'tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.; Nebosis, R. S.; Heusinger, M. A.; Renk, K. F. doi  openurl
  Title Broadband ultrafast superconducting NbN detector for electromagnetic radiation Type Journal Article
  Year 1994 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 75 Issue 7 Pages 3695-3697  
  Keywords NbN HEB  
  Abstract An ultrafast detector that is sensitive to radiation in a broad spectral range from submillimeter waves to visible light is reported. It consists of a structured NbN thin film cooled to a temperature below Tc (∼11 K). Using 20 ps pulses of a GaAs laser, we observed signal pulses with both rise and decay time of about 50 ps. From the analysis of a mixing experiment with submillimeter radiation we estimate an intrinsic response time of the detector of ∼12 ps. The sensitivity was found to be similar for the near‐infrared and submillimeter radiation. Broadband sensitivity and short response time are attributed to a quasiparticle heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 252  
Permanent link to this record
 

 
Author de Lange, G.; Kuipers, J. J.; Klapwijk, T. M.; Panhuyzen, R. A.; van de Stadt, H.; de Graauw, M. W. M. openurl 
  Title Superconducting resonator circuits at frequencies above the gap frequency Type Journal Article
  Year 1995 Publication J. Appl. Phys. Abbreviated Journal  
  Volume 77 Issue 4 Pages 1795-1804  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 257  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages 6758-6767  
  Keywords HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 306  
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W. url  doi
openurl 
  Title Ultimate performance of a superconducting quantum detector Type Journal Article
  Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.  
  Volume 21 Issue 3 Pages 171-178  
  Keywords NbN SSPD, SNSPD  
  Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 534  
Permanent link to this record
 

 
Author Burke, P. J.; Schoelkopf, R. J.; Prober, D. E.; Skalare, A.; Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; LeDuc, H. G. url  doi
openurl 
  Title Mixing and noise in diffusion and phonon cooled superconducting hot-electron bolometers Type Journal Article
  Year 1999 Publication J. Appl. Phys. Abbreviated Journal  
  Volume 85 Issue 3 Pages 1644-1653  
  Keywords HEB, mixer  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 556  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Krieg, J.-M.; Voronov, B.; Gol'tsman, G.; Desmaris, V. url  doi
openurl 
  Title Gain bandwidth of NbN hot-electron bolometer terahertz mixers on 1.5 μm Si3N4 / SiO2 membranes Type Journal Article
  Year 2007 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 101 Issue 12 Pages 124508 (1 to 6)  
  Keywords HEB, mixer, membrane  
  Abstract The gain bandwidth of NbN hot-electron bolometer terahertz mixers on electrically thin Si3N4/SiO2 membranes was experimentally investigated and compared with that of HEB mixers on bulk substrates. A gain bandwidth of 3.5 GHz is achieved on bulk silicon, whereas the gain bandwidth is reduced down to 0.6–0.9 GHz for mixers on 1.5 μm Si3N4/SiO2 membranes. We show that application of a MgO buffer layer on the membrane extends the gain bandwidth to 3 GHz. The experimental data were analyzed using the film-substrate acoustic mismatch approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 560  
Permanent link to this record
 

 
Author Uchiki, Hisao; Kobayashi, Takayoshi; Sakaki, Hiroyuki openurl 
  Title Photoluminescence and energy‐loss rates in GaAs quantum wells under high‐density excitation Type Journal Article
  Year 1987 Publication J. Appl. Phys. Abbreviated Journal  
  Volume 62 Issue 3 Pages 1010-1016  
  Keywords 2DEG, GaAs/AlGaAs, heat flow, electron-phonon, hole-phonon, carrier-phonon, interactions  
  Abstract The time‐resolved luminescence spectra from excited conduction subbands in three samples of multi‐quantum‐well GaAs/AlxGa1-xAs (x=0.3 and 1) semiconductors with several well widths and barrier heights were obtained under high‐density excitations by a 30‐ps pulsed laser at 532 nm, which generated electron–hole pairs to the concentration of 1010–1013/cm2 per well per pulse at 77 K. The temperature and the Fermi energy of electron were determined by fitting best the constructed time‐resolved spectrum to the observed, and the time‐dependent electron energy was obtained by using these parameters. The energy‐loss rates of hot electrons are at least twice smaller than the calculated ones induced by the electron‐polar phonon scattering, including the screening effect due to the high carrier density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 635  
Permanent link to this record
 

 
Author Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G. url  doi
openurl 
  Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
  Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 118 Issue 19 Pages 194303  
  Keywords terahertz detectors, asymmetric carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1169  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W. url  doi
openurl 
  Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
  Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 116 Issue 4 Pages 043906 (1 to 9)  
  Keywords NbN SSPD, SNSPD, TaN  
  Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1357  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N. url  doi
openurl 
  Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
  Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 128 Issue 22 Pages 224303 (1 to 11)  
  Keywords HEB, resonant tunneling diode, RTD  
  Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1262  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: