|   | 
Details
   web
Records
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
Title Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 10 Issue 11 Pages 727-732
Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector
Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ kovalyuk @ Serial 1105
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G.
Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep
Volume 7 Issue 1 Pages 4812
Keywords waveguide, SSPD, SNSPD
Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.
Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28684752; PMCID:PMC5500578 Approved no
Call Number (down) RPLAB @ kovalyuk @ Serial 1129
Permanent link to this record
 

 
Author Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N.
Title Optimisation of spontaneous four-wave mixing in a ring microcavity Type Conference Article
Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 47 Issue 10 Pages 887-891
Keywords ring microcavity
Abstract Abstract. A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the disper- sion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numeri- cal calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: com- pletely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ kovalyuk @ Serial 1142
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J.
Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Journal Article
Year 2011 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 107 Issue 17 Pages 4
Keywords NbN thin film, energy gap dynamics
Abstract Using time-domain terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, λ=1.1±0.1, which is in excellent agreement with theoretical estimates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 641
Permanent link to this record
 

 
Author Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N.
Title Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 37 Issue 5 Pages 469-471
Keywords SSPD, SNSPD
Abstract The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 664
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Gol'tsman, G. N.; Kinev, N. V.; Koshelets, V. P.
Title The stability of a terahertz receiver based on a superconducting integrated receiver Type Journal Article
Year 2011 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 24 Issue 3 Pages 035003
Keywords SIS mixer, SIR, stability
Abstract We present the results of stability testing of a terahertz radiometer based on a superconducting receiver with a SIS tunnel junction as the mixer and a flux-flow oscillator as the local oscillator. In the continuum mode, the receiver with a noise temperature of 95 K at 510 GHz measured over the intermediate frequency (IF) passband of 4-8 GHz offered a noise equivalent temperature difference of 10 ± 1 mK at an integration time of 1 s. We offer a method to significantly increase the integration time without the use of complex measurement equipment. The receiver observed a strong signal over a final detection bandwidth of 4 GHz and offered an Allan time of 5 s.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 705
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G.
Title Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 628-631
Keywords waveguide NbN HEB mixers
Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 719
Permanent link to this record
 

 
Author Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N.
Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 21 Issue 3 Pages 645-648
Keywords waveguide NbN HEB mixers
Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 720
Permanent link to this record
 

 
Author Seleznev, V. A.; Tarkhov, M. A.; Voronov, B. M.; Milostnaya, I. I.; Lyakhno, V. Yu; Garbuz, A. S.; Mikhailov, M. Yu; Zhigalina, O. M.; Gol'tsman, G. N.
Title Deposition and characterization of few-nanometers-thick superconducting Mo-Re films Type Journal Article
Year 2008 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 21 Issue 11 Pages 115006 (1 to 6)
Keywords
Abstract We report on the fabrication and investigation of few-nanometers-thick superconducting molybdenum-rhenium (Mo-Re) films intended for use in nanowire single-photon superconducting detectors (SSPDs). Mo-Re films were deposited on sapphire substrates by DC magnetron sputtering of an Mo(60)-Re(40) alloy target in an atmosphere of argon. The films 2-10 nm thick had critical temperatures (Tc) from 5.6 to 9.7 K. HRTEM (high-resolution transmission electron microscopy) analysis showed that the films had a homogeneous structure. XPS (x-ray photoelectron spectroscopy) analysis showed the Mo to Re atom ratio to be 0.575/0.425, oxygen concentration to be 10%, and concentration of other elements to be 1%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 723
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, C.; Blundell, R.; Gol'tsman, G.
Title A study of direct detection effect on the linearity of hot electron bolometer mixers Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 282-287
Keywords HEB mixer, direct detection effect
Abstract We have performed a study of how direct detection affects the linearity and hence the calibration of an HEB mixer. Two types of waveguide HEB devices have been used: a 0.8 THz HEB mixer and a 1.0 THz HEB mixer which is ~5 times smaller than the former. Two independent experimental approaches were used. In the ΔG/G method, the conversion gain of the HEB mixer is first measured as a function of the bias current for a number of bias voltages. At each bias setting, we carefully measure the change in the operating current when the input loads are switched. From the measured data, we can derive the expected difference in gain between the hot and cold loads. In the second method (injection method [1]), the linearity of the HEB mixer is independently measured by injecting a modulated signal for different input load temperatures. The results of both approaches confirm that there is gain compression in the operation of HEB mixers. Based on the results of our measurements, we discuss the impact of direct detection effects on the operation of HEB mixers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ gujma @ Serial 724
Permanent link to this record