|   | 
Details
   web
Records
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Erratum: “Single photon experiments at telecom wavelengths using nanowire superconducting detectors” [Appl. Phys. Lett. 91, 031106 (2007)] Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 8 Pages 089901
Keywords SSPD, SNSPD, erratum
Abstract A calculation error was made in the original publication of this letter. The error was in the calculation of the noise equivalent power (NEP) values for the avalanche photodiode detector (APD) and the superconducting single photon detector (SSPD), the incorrect values were plotted on the right axis in Fig. 1(b). The correct NEP values were calculated with the same equation reported in the original letter and the revised Fig. 1(b) is shown below. The other conclusions of the paper remain unaltered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 1395
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 91 Issue 3 Pages 031106 (1 to 3)
Keywords SSPD, SNSPD, APD
Abstract The authors report fiber-coupled superconducting single-photon detectors with specifications that exceed those of avalanche photodiodes, operating at telecommunication wavelength, in sensitivity, temporal resolution, and repetition frequency. The improved performance is demonstrated by measuring the intensity correlation function g(2)(τ) of single-photon states at 1300nm produced by single semiconductor quantum dots.

This work was supported by Swiss National Foundation through the “Professeur borsier” and NCCR Quantum Photonics program, FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433), IP “QAP” (Contract No. 15848), NOE “ePIXnet,” and the Italian MIUR-FIRB program.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Erratum: 1395 Approved no
Call Number (down) Serial 1396
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B.
Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 395-398
Keywords NbN HEB mixers, noise temperature
Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 1429
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume 54 Issue 7 Pages 2944-2948
Keywords NbN HEB mixers
Abstract In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 1448
Permanent link to this record
 

 
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M.
Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations
Volume 9 Issue 4 Pages 242-245
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-1227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 1550
Permanent link to this record
 

 
Author Svechnikov, S. I.; Antipov, S. V.; Vakhtomin, Y. B.; Goltsman, G. N.; Gershenzon, E. M.; Cherednichenko, S. I.; Kroug, M.; Kollberg, E.
Title Conversion and noise bandwidths of terahertz NbN hot-electron bolometer mixers Type Journal Article
Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations
Volume 9 Issue 3 Pages 205-210
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-1227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 1551
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
Year 2000 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 71 Issue 1 Pages 31-34
Keywords 2DEG, GaAs/AlGaAs heterostructures
Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no
Call Number (down) Serial 1559
Permanent link to this record
 

 
Author Moshkova, M. A.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.
Title High-efficiency multi-element superconducting single-photon detector Type Conference Article
Year 2021 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 11771 Issue Pages 2-8
Keywords PNR SSPD, large active area, detection efficiency
Abstract We present the result of the creation and investigation of the multi-element superconducting single photon detectors, which can recognize the number of photons (up to six) in a short pulse of the radiation at telecommunication wavelengths range. The best receivers coupled with single-mode fiber have the system quantum efficiency of ⁓85%. The receivers have a 100 ps time resolution and a few nanoseconds dead time that allows them to operate at megahertz counting rate. Implementation of the multi-element architecture for creation of the superconducting single photon detectors with increased sensitive area allows to create the high efficiency receivers coupled with multi-mode fibers and with preserving of the all advantages of superconducting photon counters.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Optics and Photon Counting
Notes Approved no
Call Number (down) Serial 1795
Permanent link to this record
 

 
Author Smirnov, K.; Moshkova, M.; Antipov, A.; Morozov, P.; Vakhtomin, Y.
Title The cascade switching of the photon number resolving superconducting single-photon detectors Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 31 Issue 2 Pages 1-4
Keywords PNR SSPD, SNSPD
Abstract In this article, present the first detailed study of cascade switching in superconducting photon number resolving detectors. The detectors were made in the form of four parallel nanowires, coupled with the single-mode optical fiber and mounted into a closed-cycle refrigerator with a temperature of 2.1 K. We found out the value of additional false pulses (N cas.sw. ) appearing due to cascade switching and showed that it is possible to set up the detector bias current that corresponds to a high level of the detection efficiency and a low level of N cas.sw. simultaneously. We reached the detection efficiency of 60% and N cas.sw. = 0.3%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 1796
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K.
Title Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 10 Issue 1 Pages 16819
Keywords VN HEB
Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.
Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33033360; PMCID:PMC7546726 Approved no
Call Number (down) Serial 1797
Permanent link to this record