|   | 
Details
   web
Records
Author Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S.
Title Terahertz detection in single wall carbon nanotubes Type Journal Article
Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue 3 Pages 033105
Keywords HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz
Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes NEP is not shown Approved no
Call Number (down) Serial 566
Permanent link to this record
 

 
Author Siddiqi, I.; Prober, D. E.
Title Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection Type Journal Article
Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 8 Pages 1404
Keywords HEB, mixers, dynamic range, saturation, LO power, local oscillator power, Nb
Abstract The sensitivity of present Nb diffusion-cooled hot-electron bolometer (HEB) mixers is not quantum limited, and can be improved by reducing the superconducting transition temperature TC. Lowering TC reduces thermal fluctuations, resulting in a decrease of the mixer noise temperature TM. However, lower TC mixers have reduced dynamic range and saturate more easily due to background noise. We present 30 GHz microwave measurements on a bilayer HEB system, Nb–Au, in which TC can be tuned with Au layer thickness to obtain the maximum sensitivity for a given noise background. These measurements are intended as a guide for the optimization of THz mixers. Using a Nb–Au mixer with TC = 1.6 K, we obtain TM = 50 K with 2 nW of local oscillator (LO) power. Good mixer performance is observed over a wide range of LO power and bias voltage and such a device should not exhibit saturation in a THz receiver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 571
Permanent link to this record
 

 
Author Barends, R.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.
Title Current-induced vortex unbinding in bolometer mixers Type Journal Article
Year 2005 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 87 Issue Pages 263506 (1 to 3)
Keywords HEB mixer numerical model, HEB model, IV-curves, vortex-antivortex, Berezinskii–Kosterlitz–Thouless theory, diffusion cooling channel, diffusion channel, distributed HEB model, distributed model, self-heating effect, temperature profile
Abstract We present a description of the current-voltage characteristics of hot electron bolometers in terms of the current-dependent intrinsic resistive transition of NbN films. We find that, by including this current dependence, we can correctly predict the complete current-voltage characteristics, showing excellent agreement with measurements for both low and high bias and for small as well as large devices. It is assumed that the current dependence is due to vortex-antivortex unbinding as described in the Berezinskii–Kosterlitz–Thouless theory. The presented approach will be useful in guiding device optimization for noise and bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 604
Permanent link to this record
 

 
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.
Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 11 Pages 111113-(1-3)
Keywords HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz
Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 624
Permanent link to this record
 

 
Author Walther, Christoph; Scalari, Giacomo; Faist, Jerome; Beere, Harvey; Ritchie, David
Title Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz Type Journal Article
Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 89 Issue Pages 231121(1-3)
Keywords QCL, 360 uW at 1.6 THz
Abstract The authors report a GaAs/Al0.1Ga0.9As quantum cascade laser based on a bound-to-continuum transition optimized for low frequency operation. High tunability of the gain curve is achieved by the Stark effect and laser emission is measured between 1.6 and 1.8 THz. Pulsed mode operation up to 95 K and continuous wave operation up to 80 K are reported. The dynamical range in current is as high as 43%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) Serial 629
Permanent link to this record