|   | 
Details
   web
Records
Author Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A.
Title Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors Type Journal Article
Year 2009 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal
Volume 47 Issue Pages 10701
Keywords SSPD, SNSPD
Abstract We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ alex_kazakov @ Serial 1062
Permanent link to this record
 

 
Author Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N.
Title Characterization of MoSi superconducting single-photon detectors in the magnetic field Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2200504 (1 to 4)
Keywords SSPD, SNSPD
Abstract We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ akorneev @ KorneevIEEE2015 Serial 991
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Recent nanowire superconducting single-photon detector optimization for practical applications Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2201204 (1 to 4)
Keywords SSPD, SNSPD
Abstract In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ akorneev @ KorneevIEEE2013 Serial 996
Permanent link to this record
 

 
Author Heeres, R.W.; Dorenbos, S.N.; Koene, B.; Solomon, G.S.; Kouwenhoven, L.P.; Zwiller, V.
Title On-Chip Single Plasmon Detection Type Journal Article
Year 2010 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 10 Issue Pages 661-664
Keywords optical antennas; SSPD; Single surface plasmons; superconducting detectors; semiconductor quantum dots; nanophotonics
Abstract Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ akorneev @ Serial 620
Permanent link to this record
 

 
Author Santavicca,D.F.; Reulet,B.; Karasik,B.S.; Pereverzev,S.V.; Olaya, D.; Gershenson, M.E.; Frunzio, L.; Prober, D.E.
Title Energy resolution of terahertz single-photon-sensitive bolometric detectors Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 8 Pages 083505 - 083505-3
Keywords
Abstract We report measurements of the energy resolution of ultrasensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 THz, near the predicted value due to intrinsic thermal fluctuation noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) RPLAB @ akorneev @ Serial 601
Permanent link to this record