toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Antipov, S. V.; Vachtomin, Yu. B.; Maslennikov, S. N.; Smirnov, K. V.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Noise performance of quasioptical ultrathin NbN hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW  
  Volume 2 Issue Pages 592-594  
  Keywords NbN HEB mixers  
  Abstract To put space-based and airborne heterodyne instruments into operation at frequencies above 1 THz the superconducting NbN hot-electron bolometer (HEB) will be incorporated into heterodyne receiver as a mixer. At frequencies above 1.3 THz the sensitivity of the NbN HEB mixers outperform the one of the Schottky diodes and SIS-mixers, and the receiver noise temperature of the NbN HEB mixers increase with frequency. In this paper we present the results of the noise temperature measurements within one batch of NbN HEB mixers based on 3.5 mn thick superconducting NbN film grown on Si substrate with MgO buffer layer at the LO frequencies 2.5 THz and 3.8 THz.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Kharkov, Ukraine Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 351  
Permanent link to this record
 

 
Author Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S. url  openurl
  Title Hot electron mixers for THz applications Type Conference Article
  Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal Proc. 30th ESLAB  
  Volume Issue Pages 207-210  
  Keywords NbN HEB mixers  
  Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.  
  Address Noordwijk, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Rolfe, E. J.; Pilbratt, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Submillimetre and Far-Infrared Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1606  
Permanent link to this record
 

 
Author Baubert, J.; Salez, M.; Delorme, Y.; Pons, P.; Goltsman, G.; Merkel, H.; Leconte, B. url  doi
openurl 
  Title Membrane-based HEB mixer for THz applications Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5116 Issue Pages 551-562  
  Keywords membrane NbN HEB mixers, heterodyne receiver, stress-less membrane, coupling efficiency, submillimeter-waves frequency, low-cost space applications  
  Abstract We report in this paper a new concept for 2.7 THz superconducting Niobium nitride (NbN) Hot-Electron Bolometer mixer (HEB). The membrane process was developped for space telecommnunication applications a few years ago and the HEB mixer concept is now considered as the best choice for low-noise submillimeter-wave frequency heterodyne receivers. The idea is then to join these two technologies. The novel fabrication scheme is to fabricate a NbN HEB mixer on a 1 μm thick stress-less Si3N4/SiO2 membrane. This seems to present numerous improvements concerning : use at higher RF frequencies, power coupling efficiency, HEB mixer sensitivity, noise temperature, and space applications. This work is to be continued within the framework of an ESA TRP project, a 2.7 THz heterodyne camera with numerous applications including a SOFIA airborne receiver. This paper presents the whole fabrication process, the validation tests and preliminary results. Membrane-based HEB mixer theory is currently being investigated and further tests such as heterodyne and Fourier transform spectrometry measurement are planed shortly.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Chiao, J.-C.; Varadan, V.K.; Cané, C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Smart Sensors, Actuators, and MEMS  
  Notes Approved no  
  Call Number Serial 1520  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R. url  doi
openurl 
  Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5732 Issue Pages 520-529  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Quantum Sensing and Nanophotonic Devices II  
  Notes Approved no  
  Call Number Serial 1478  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 80720G (1 to 9)  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III  
  Notes Approved no  
  Call Number Serial 1387  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength Type Conference Article
  Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 10229 Issue Pages 0G (1 to 12)  
  Keywords SSPD mixer, SNSPD, coherent detection, weak signal detection, superconducting nanostructures  
  Abstract Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector’s pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Prochazka, I.; Sobolewski, R.; James, R.B.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Photon counting applications  
  Notes Approved no  
  Call Number 10.1117/12.2267724 Serial 1201  
Permanent link to this record
 

 
Author Goltsman, G. N. url  doi
openurl 
  Title Submillimeter superconducting receivers for astronomy, atmospheric studies and other applications Type Abstract
  Year 2006 Publication 31nd IRMW / 14th ICTE Abbreviated Journal 31nd IRMW / 14th ICTE  
  Volume Issue Pages 177  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics  
  Notes Approved no  
  Call Number Serial 1443  
Permanent link to this record
 

 
Author Bryerton, E.; Percy, R.; Bass, R.; Schultz, J.; Oluleye, O.; Lichtenberger, A.; Ediss, G. A.; Pan, S. K.; Goltsman, G. N. url  doi
openurl 
  Title Receiver measurements of pHEB beam lead mixers on 3-μm silicon Type Conference Article
  Year 2005 Publication Proc. 30th IRMMW / 13th THz Abbreviated Journal Proc. 30th IRMMW / 13th THz  
  Volume Issue Pages 271-272  
  Keywords  
  Abstract We report on receiver noise measurement results of phonon-cooled HEB beam lead mixers on 3 μm thick silicon. This type of ultra-thin mixer chip with integrated beam leads allows easy assembly into a block and holds great promise for array integration. Receiver measurements from 600-720 GHz are presented with a minimum noise temperature of 500 K at 666 GHz. These results verify the mixer performance of the SOI processing techniques allowing for further design and integration of SOI pHEB mixers in receivers operating above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics  
  Notes Approved no  
  Call Number Serial 1460  
Permanent link to this record
 

 
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. doi  openurl
  Title Quantum key distribution over 300 Type Conference Article
  Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9440 Issue Pages 1F (1 to 9)  
  Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD  
  Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Orlikovsky, A. A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) International Conference on Micro- and Nano-Electronics  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegov2014quantum Serial 1048  
Permanent link to this record
 

 
Author Kollberg, Erik L.; Gershenzon, E.; Goltsman, G.; Yngvesson, K. S. url  openurl
  Title Hot electron mixers, the potential competition Type Conference Article
  Year 1992 Publication Proc. ESA Symp. on Photon Detectors for Space Instrumentation Abbreviated Journal Proc. ESA Symp. on Photon Detectors for Space Instrumentation  
  Volume Issue Pages 201-206  
  Keywords HEB mixers  
  Abstract There is an urgent need in radio astronomy for low noise heterodyne receivers for frequencies above about 500 GHz. It is not certain that mixers based on superconducting quasiparticle tunnelling (SIS mixers) may turn out to be the answer to this need. In order to try to find an alternative way for realizing low noise heterodyne receivers for submillimeter waves, so called hot electron bolometric effects for mixing are now being investigated. Two basically different approaches are tried, one based on semiconductors and one on superconductors. Both methods are briefly discussed in this overview paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ESA Symposium on Photon Detectors for Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1667  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: