|   | 
Details
   web
Records
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G.
Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6373 Issue Pages 63730J (1 to 5)
Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations
Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) Terahertz Physics, Devices, and Systems
Notes Approved no
Call Number Serial 1441
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W.
Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3828 Issue Pages 410-416
Keywords NbN HEB mixers
Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Chamberlain, J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) Terahertz Spectroscopy and Applications II
Notes Approved no
Call Number Serial 1477
Permanent link to this record