|   | 
Details
   web
Records
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop
Volume Issue Pages
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address Monterey, CA, USA
Corporate Author Thesis
Publisher Place of Publication Editor Wold, J.; Davidson, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no
Call Number Serial 1829
Permanent link to this record
 

 
Author Gol’tsman, G. N.
Title Terahertz technology in Russia Type Conference Article
Year 1994 Publication 24th European Microwave Conf. Abbreviated Journal 24th European Microwave Conf.
Volume 1 Issue Pages 113-121
Keywords BWO, HEB mixers
Abstract The presentation consider the parameters and operating peculiarities of unique microwave generators of the terahertz range which have been created in Russia – the backward wave oscillators – as well as certain devices based on these generators, such as high resolution. spectrometers and time-resolving spectrometers with picosecond temporal resolution. Most resent BWO-based studies are illustrated by a project devoted to superconductive hot-electron. bolometers which are of great independent value for the terahertz technology as high-sensitive picosecond detectors and low noise broad-band mixers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) 24th European Microwave Conference
Notes Approved no
Call Number Serial 1635
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'in, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers Type Conference Article
Year 1997 Publication Proc. 27th Eur. Microwave Conf. Abbreviated Journal
Volume 2 Issue Pages 972-977
Keywords HEB mixer, fabrication process
Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 nm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 um wide and 2 um long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.2 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address Jerusalem, Israel
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) 27th Eur. Microwave Conf.
Notes Approved no
Call Number Serial 1075
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal Proc. 28th European Microwave Conf.
Volume 1 Issue Pages 294-299
Keywords NbN HEB mixers
Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) 28th European Microwave Conference
Notes Approved no
Call Number Serial 1580
Permanent link to this record
 

 
Author Kroug, M.; Yagoubov, P.; Gol'tsman, G.; Kollberg, E.
Title NbN quasioptical phonon cooled hot electron bolometric mixers at THz frequencies Type Conference Article
Year 1997 Publication Inst. Phys. Conf. Ser. Abbreviated Journal Inst. Phys. Conf. Ser.
Volume 1 Issue Pages 405-408
Keywords NbN HEB mixers
Abstract
Address Veldhoven
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-3248 ISBN Medium
Area Expedition Conference (up) 3rd Eur. Conf. on Applied Superconductivity
Notes Approved no
Call Number Serial 1600
Permanent link to this record