toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Genack, Azriel Z.; Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Chao, Norman; Neugroschl, Daniel A. openurl 
  Title Chiral fiber Bragg gratings Type Conference Article
  Year 2004 Publication Proceedings of the SPIE Abbreviated Journal Proc. SPIE  
  Volume 5508 Issue Pages 57-64  
  Keywords optical fiber gratings, chiral fiber gratings, chiral gratings, from chiralphotonics  
  Abstract We have produced chiral fiber Bragg gratings with double-helix symmetry and measured the polarization and wavelength selective transmission properties of these structures. These gratings interact only with circularly polarized light with the same handedness as the grating twist and freely transmit light of the orthogonal polarization. The optical characteristics of chiral fibers are compared to those of planar cholesteric structures. The resonant standing wave at the band edge or at a defect state within the band gap, as well as the evanescent wave within the band gap is comprised of two counterpropagating components of equal amplitude. The electric field vector of such a circularly polarized standing wave does not rotate in time; rather it is linearly polarized in any given plane. The standing wave may be described in terms of the sense of circular polarization of the two counterpropagating components. The wavelength dependence of the angle q between the linearly polarized electromagnetic field and the extraordinary axis, which is constant throughout a long structure, is obtained in a simple calculation. The results are in good agreement with scattering matrix calculations. Resonant chiral gratings are demonstrated for microwave radiation whereas chiral gratings with pitch exceeding the wavelength are demonstrated at optical wavelengths in single-mode glass fibers. The different functionalities of these fibers are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 854  
Permanent link to this record
 

 
Author Krasnopolsky, Vladimir A.; Maillard, Jean Pierre; C. Owen, Tobias openurl 
  Title Detection of methane in the martian atmosphere: evidence for life? Type Journal Article
  Year 2004 Publication Icarus Abbreviated Journal Icarus  
  Volume 172 Issue 2 Pages 537-547  
  Keywords FTS, Mars atmosphere, methane absorption lines, IR spectroscopy, infrared spectroscopy, landfill gas  
  Abstract Using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to View the MathML source, the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 879  
Permanent link to this record
 

 
Author Klapwijk, T. M.; Barends, R.; Gao, J. R.; Hajenius, M.; Baselmans, J. J. A. openurl 
  Title Improved superconducting hot-electron bolometer devices for the THz range Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages 129-139  
  Keywords HEB mixer distributed model, numerical model  
  Abstract Improved and reproducible heterodyne mixing (noise temperatures of 950 K at 2.5 THz) has been realized with NbN based hot-electron superconducting devices with low contact resistances. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, has been used to understand the physical conditions during the mixing process. We find that the mixing is predominantly due to the exponential rise of the local resistivity as a function of electron temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Invited talk, Recommended by Klapwijk Approved no  
  Call Number Serial 912  
Permanent link to this record
 

 
Author Boogaard, G.R.; Verbruggen, A.H.; Belzig, W.; Klapwijk T.M. openurl 
  Title Resistance of superconducting nanowires connected to normal-metal leads Type Journal Article
  Year 2004 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 69 Issue Pages 220503(R)(1-4)  
  Keywords  
  Abstract We study experimentally the low temperature resistance of superconducting nanowires connected to normal metal reservoirs. Wefind that a substantial fraction of the nanowires is resistive, down to the lowest tempera-ture measured, indicative of an intrinsic boundary resistance due to the Andreev-conversion of normal current to supercurrent. The results are successfully analyzed in terms of the kinetic equations for diffusive superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 960  
Permanent link to this record
 

 
Author Meledin D.; Pantaleev M.; Pavolotsky A.; Risacher C.; Robles V.A.P.; Belitsky V.; Drakinskiy V.; Cherednichenko S. openurl 
  Title Design of a balanced waveguide HEB mixer for APEX 1.32 THz receiver Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 211-217  
  Keywords  
  Abstract The prototype of a waveguide balanced Hot Electron Bolometer (HEB) Terahertz mixer is designed as a part of development for the APEX Project of Band T2 receiver for 1250-1390 GHz. The proposed mixer employs balanced scheme with two identical HEB devices. These individual mixers would be placed on two separate crystalline quartz substrates with dimensions of 1000μm x67μm x17 μm each with integrated RF choke filters, DC-bias and IF circuitry. A 3 dB quadrature waveguide directional coupler is needed to provide local oscillator (LO) injection and RF signal distribution between the two HEB mixers. We have designed the coupler to achieve the required frequency band, low insertion loss and symmetrical division of the RF and LO power within the band of interest. Initial design of HEB mixer layout is developed based on a previous development for a 345 GHz sideband separation mixer. We present also results of development of microfabrication technology of the waveguide hybrid employing micromachining approach combined with electroplating technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 972  
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
 

 
Author Sobolewski, R.; Verevkin, A.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting optical single-photon detectors Type Conference Article
  Year 2004 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages IThD1  
  Keywords SSPD, QE, jitter, dark counts  
  Abstract We review the development of superconducting single-photon detectors. The devices are characterized by experimental quantum efficiency of ~8% for infrared photons, counting rate ~2 GHz, 18 ps jitter, and <0.01 per second dark counts.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Sobolewski:04 Serial 1489  
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Berg, T.; Merkel, H.; Kollberg, E.; Drakinskiy, V.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Optimization of HEB mixer for the Herschel Space Observatory Type Abstract
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 16  
  Keywords NbN HEB mixers, applications  
  Abstract A mixer development for the HIFI instrument of the Herschel Space Observatory has come to the final stage. In our paper and conference presentation we will describe the most important details of the Band 6 Low and High Mixer Unit design. Special attention will be given to the optimization of the hot- electron bolometer mixer chip, which is based on 3.5nm NbN superconducting film on silicon. As the HEB’s local oscillator power requirements depend on the bolometer size, we have compared mixer noise temperature for different bolometer width- to- length ratio. A trade- off between mixer performance and local oscillator power requirements results in the mixer units equipped with optimized mixer chips, providing the largest coverage of the Band6 RF band with the lowest possible receiver noise. A short account of the beam pattern measurements of Band6 mixers will be given as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1490  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 17-24  
  Keywords NbN HEB mixers  
  Abstract We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1491  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: