toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maslennikov, S. url  openurl
  Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
  Year 2014 Publication arXiv Abbreviated Journal arXiv  
  Volume 1404.5276 Issue Pages 1-4  
  Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method  
  Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 954  
Permanent link to this record
 

 
Author Pütz P.; Büchel D.; Jacobs K.; Schultz M.; Honingh C.E.; Stutzki J. openurl 
  Title Waveguide Hot Electron Bolometer Mixer development for upGREAT Type Journal Article
  Year 2014 Publication Kosma Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We report on our hot electron bolometer mixer development for the focal plane array extension upGREAT of the German Receiver for Astronomy at Terahertz frequencies (GREAT) operated on SOFIA. For (up)GREAT we have pushed the waveguide technology to 4.7 THz and present RF performance results. We describe the RF planar circuit design, the micro fabrication employing NbN microbridges on 2 µm thin Si membrane substrates and the machining technology used for the waveguides. One of the 4.7 THz mixers was used in the high frequency channel on GREAT in May 2014 and performed as expected from the laboratory characterization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 970  
Permanent link to this record
 

 
Author Gurovich, B. A.; Tarkhov, M. A.; Prikhod'ko, K. E.; Kuleshova, E. A.; Komarov, D. A.; Stolyarov, V. L.; Olshanskii, E. D.; Goncharov, B. V.; Goncharova, D. A.; Kutuzov, L. V.; Domantovskii, A. G. openurl 
  Title Controlled modification of superconducting properties of NbN ultrathin films under composite ion beam irradiation Type Journal Article
  Year 2014 Publication Nanotechnologies in Russia Abbreviated Journal Nanotechnologies in Russia  
  Volume 9 Issue 7 Pages 386-390  
  Keywords superconducting NbN films composite ion beam irradiation protoning  
  Abstract In this work, the results of studying the microstructure and superconducting properties of ultrathin films on the basis of NbN in the initial state and after modification by being subjecting to composite ion beam irradiation with the energy ~1–3) keV are presented. HRTEM analysis showed that the initial films on the sapphire substrate in orientation “c-cut” are characterized by a grain size essentially exceeding the film thickness, while on the other substrates the size of grains corresponds to the thickness of film. Using XPS analysis, it was shown that in the initial films the atomic ratio of Nb and N is 0.51/0.49, respectively, the percentage of oxygen being lower than 5%. For ultrathin films 5 nm in thickness, the critical temperature of transit to superconducting state (T c) is found to be ~3.6 K and the density of critical current is jc ~8MA/cm2. In the work it is experimentally determined that the irradiation of NbN films by composite ion beams leads to the controlled modification of its superconducting properties due to the process of selective substitution of nitrogen atoms on the oxygen atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1000  
Permanent link to this record
 

 
Author Bueno, J.; Coumou, P. C. J. J.; Zheng, G.; de Visser, P. J.; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.; Baselmans, J. J. A openurl 
  Title Anomalous response of superconducting titanium nitride resonators to terahertz radiation Type Journal Article
  Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 105 Issue Pages 192601 (1 to 5)  
  Keywords KID, TiN, NEP, disordered superconductors, inhomogeneous state  
  Abstract We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1068  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Petrenko, D.; Tretyakov, I.; Ryabchun, S.; Finkel, M.; Kaurova, N.; Gol’tsman, G.; Risacher, C.; Ricken, O.; Güsten, R. url  openurl
  Title Optimization of the intermediate frequency bandwidth in the THz HEB mixers Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 54  
  Keywords NbN HEB mixer  
  Abstract We report on the studies of the intermediate frequency (IF) bandwidth of quasi-optically coupled NbN hot-electron bolometer (HEB) mixers which are aimed at the optimization of the mixer performance at terahertz frequencies. Extension of the IF bandwidth due to the contribution of electron diffusion to the heat removal from NbN microbolometers has been already demonstrated for NbN HEBs at subterahertz frequencies. However, reducing the size of the microbolometer causes degradation of the noise temperature. Using in-situ multilayer manufacturing process we succeeded to improve the transparency of the contacts for electrons which go away from microbolometer to the metallic antenna. The improved transparency and hence coupling efficiency counterbalances the noise temperature degradation. HEB mixers were tested in a laboratory heterodyne receiver with a narrow-band cold filter which allowed us to eliminate direct detection. We used a local oscillator with a quantum cascade laser (QCL) at a frequency of 4.745 THz [1] which was developed for the H-Channel of the German Receiver for Astronomy at Terahertz frequencies (GREAT). Both the noise and gain bandwidth were measured in the IF range from 0.5 to 8 GHz using the hot-cold technique and preliminary calibrated IF analyzer with a tunable microwave filter. For optimized HEB geometry we found the noise bandwidth as large as 7 GHz. We compare our results with the conventional and the hot-spot mixer models and show that further extension of the IF bandwidth should be possible via improving the sharpness of the superconducting transition. The cross characterization of the HEB mixer was performed in the test bed of GREAT at the Max-Planck-Institut für Radioastronomie with the same QCL LO and delivered results which were consistent with the laboratory studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1359  
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol’tsman, G.; Bezryadin, A. url  openurl
  Title Dark counts initiated by macroscopic quantum tunneling in NbN superconducting photon detectors Type Miscellaneous
  Year 2014 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords NbN SSPD  
  Abstract We perform measurements of the switching current distributions of three w = 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number murphy2014dark Serial 1356  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; de Visser, P. J.; Yates, S. J. C.; Bueno, J.; Jansen, R. M. J.; Endo, A.; Thoen, D. J.; Baryshev, A. M.; Ferrari, L.; Klapwijk, T. M. url  openurl
  Title Large format, background limited arrays of kinetic inductance detectors for sub-mm astronomy Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 64  
  Keywords KID  
  Abstract Kinetic Inductance detectors have held a promise for the last decade to enable very large arrays, in excess of 10.000 pixels, with background limited sensitivity for ground- and Space Based sub-mm observatories. First we present the development of the detector chips of the A-MKID instrument: These chips contain up to 5400 detector pixel divided over up to 5 readout lines for the 350 GHz and 850 GHz atmospheric windows. The individual detectors are lens antenna coupled KIDs made of NbTiN and Aluminium that reach photon noise limited sensitivity at sky loading levels in excess of a few fW per pixel using either phase readout or amplitude readout. The ability to use phase readout is crucial as it reduces the requirements on the readout electronics of the instrument. Cross coupling between the KID resonators was mitigated by a combination of numerical simulations and a suitable position encoding of the readout resonance frequencies of the individual pixels. Beam pattern measurements are performed to demonstrate the absence of any cross talk due to resonator- resonator cross coupling. Second we present experiments on individual lens-antenna coupled detectors at 1.5 THz that are made out of aluminium. With these devices we have observed, as a function of the irradiated power at 1.5 THz, the crossover from photon noise limited performance to detector-limited performance at loading powers less than 0.1 fW. In the latter limit the device is limited by intrinsic fluctuations in the Cooper pair and quasiparticle number, i.e. Generation-Recombination noise. This results in a sensitivity corresponding to a NEP = 3.8·10 -19 W/√(Hz).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1360  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Goltsman, G. url  openurl
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-THz radiation Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 71  
  Keywords carbon nanotubes, CNT  
  Abstract This work reports on the voltage response of asymmetric carbon nanotube devices to sub-THz radiation at the frequency of 140 GHz. The devices contain CNT’s, which are over their length partially suspended and partially Van der Waals bonded to a SiO 2 substrate, causing a difference in thermal contact. Different heat sinking of CNTs by source and drain gives rise to temperature gradient and consequent thermoelectric power (TEP) as such a device is exposed to the sub-THz radiation. Sign of the DC signal, its power and gate voltage dependence observed at room temperature are consistent with this scenario. At liquid helium temperature the observed response is more complex. DC voltage signal of an opposite sign is observed in a narrow range of gate voltages at low temperatures and under low radiation power. We argue that this may indicate a true photovoltaic response from small gap (less than 10meV) CNT’s, an effect never reported before. While it is not clear if the observed effects can be used to develop efficient THz detectors we note that the responsivity of our devices exceeds that of CNT based devices in microwave or THz range reported before at room temperature. Besides at 4.2 K notable increase of the sample conductance (at least four-fold) is observed. Our recent results with asymmetric carbon nanotube devices response to THz radiation (2.5 THz) will also be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1361  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Seliverstov, Sergey; Zolotov, Philipp; Kaurova, Natalya; Voronov, Boris; Finkel, Matvey; Goltsman, Gregory url  openurl
  Title Noise temperature and noise bandwidth of hot-electron bolometer mixer at 3.8 THz Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 77  
  Keywords NbN HEB mixer  
  Abstract We report on our recent results of double sideband (DSB) noise temperature and bandwidth measurements of quasi-optical hot electron bolometer (HEB) mixers at local oscillator frequency of 3.8 THz. The HEB mixers used in this work were made of a NbN thin film and had a superconducting transition temperature of about 10.3 K. To couple terahertz radiation, the NbN microbridge (0.2 μm long and 2 μm wide) was integrated with a planar logarithmic-spiral antenna. The mixer chip was glued to an elliptical Si lens clamped tightly to a mixer block mounted on the 4.2 K plate of a liquid helium cryostat. The terahertz radiation was fed into the HEB device through the cryostat window made of a 0.5 mm thick HDPE. A band-pass mesh filter was mounted on the 4.2 K plate to minimize the direct detection effect [1]. We used a gas discharge laser irradiating at 3.8 THz H 2 0 line as a local oscillator (LO). The LO power was combined with a black body broadband radiation via Mylar beam splitter. Our receiver allows heterodyne detection with an intermediate frequency (IF) of a several gigahertz which dictates usage of a wideband SiGe low noise amplifier [2]. The receiver IF output signal was further amplified at room temperature and fed into a square-law power detector through a band-pass filter. The DSB receiver noise temperature was measured using a conventional Y-factor technique at IF of 1.25 GHz and band of 40 MHz. Using wideband amplifiers at both cryogenic and room temperature stages we have estimated IF bandwidth of the HEB mixers used. The obtained results strengthen the position of the HEB mixer as one of the most important tools for submillimeter astronomy. This device operates well above the energy gap (at frequencies above 1 THz) where performance of state-of-the-art SIS mixers starts to degrade. So, HEB mixers are expected to be a device of choice in astrophysical observations (ground-, aircraft- and space-based) at THz frequencies due to its excellent noise performance and low LO power requirements. The HEB mixers will be in operation on Millimetron Space Observatory. References 1. J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. R. Gao, T. M. Klapwijk, Yu. Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman, Appl. Phys. Lett., 86, 163503 (2005). 2. Sander Weinreb, Life Fellow, IEEE, Joseph C. Bardin, Student Member, IEEE, and Hamdi Mani, “Design of Cryogenic SiGe Low-Noise Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, 55, 11, 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1362  
Permanent link to this record
 

 
Author Kinev, N. V.; Filippenko, L. V.; Ozhegov, R. V.; Gorshkov, K. N.; Gol’tsman, G. N.; Koshelets, V. P. url  openurl
  Title Superconducting integrated receiver with HEB-mixer Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 78  
  Keywords NbN HEB mixer, SIR, superconducting integrated receiver  
  Abstract Detectors in THz range with high sensitivity are very essential nowadays in different fields: space technology, atmospheric research, medicine and security. The most sensitive heterodyne detectors below 1 THz are the SIS- mixers due to its extremely high non-linearity and low noise level. Nevertheless, their effective range is strongly limited by superconducting gap Δ (about 1 THz for NbN circuits). Above 1 THz the detectors based on HEB (hot electron bolometers) are more effective [1]; their operation frequency is not limited from above and can be up to 70 THz [2]. HEBs can perform as both direct and heterodyne detectors (mixers). All HEB-mixers are used with external heterodyne, most useful are synthesizer with multipliers, quantum cascade lasers or far infrared lasers and backward-wave oscillators. Superconducting integrated receiver (SIR) is based on implementation of both SIS-miser and flux flow oscillator (FFO) acting as heterodyne at single chip [3]. Such receiver has been successfully applied at TELIS balloon-borne instrument for study of atmospheric constituents [4] and looks as very promising device for other THz missions including space research. Thus, there is a task to expand its operating range to higher frequencies. The frequency range of the SIR the operation is limited by both the SIS-mixer and the FFO maximum frequencies. The idea of present work is implementation of the HEB as a mixer in the SIR instead of the SIS traditionally used. We introduce the first results of integrating the HEB-mixer coupled to planar slot antenna with the FFO on one chip. For properly FFO operation the SIS harmonic mixer is used to phase lock the oscillator. The scheme of the SIR based on the HEB- mixer is presented in fig. 1. We have demonstrated the principal possibility of integration of both the HEB-mixer and the flux-flow oscillator on a single chip and succeed with sufficient power coupling for properly receiver operation. We measured the direct response of the HEB coupled to the antenna at THz frequencies by the FTS setup and noise temperature of the receiver with standard Y- factor measuring technique. The SIR operating range 450-620 GHz was achieved with the best uncorrected noise temperature of about 1000 К. One should note that it is still quite low frequencies for effective operation of the HEB-mixer; therefore we expect to obtain the better results for frequencies above 700 GHz (up to 1.2 THz). Another additional task is to increase the FFO frequencies by using NbTiN electrodes instead of NbN; currently we are working on this issue. This work was supported by the RFBR grant, the Ministry of Education and Science of Russia and Russian Academy of Sciences. References 1. D. Semenov, H.-W. Hubers, J. Schubert, G. N. Gol’tsman, A. I. Elantiev, B. M. Voronov, E. M. Gershenzon, Design and performance of the lattice-cooled hot-electron terahertz mixer, J. Appl. Phys. 88, 6758, 2000. 2. Maslennikov S. N., Finkel M. I., Antipov S. V. et al. Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70THz. Proc. 17 th international symposium on space terahertz technology. Paris, France: 2006.—may. Pp. 177 – 179. 3. V.P. Koshelets, S.V. Shitov. Integrated Superconducting Receivers. Supercond. Sci. Technol. Vol. 13. P. R53-R59. 2000. 4. Gert de Lange, Dick Boersma, Johannes Dercksen et.al. Development and Characterization of the Superconducting Integrated Receiver Channel of the TELIS Atmospheric Sounder. Supercond. Sci. Technol. vol. 23, No 4, 045016 (8pp). 2010.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1363  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: