|   | 
Details
   web
Records
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D.
Title Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
Year 2015 Publication Semicond. Abbreviated Journal Semicond.
Volume 49 Issue 13 Pages 1749-1753
Keywords carbon nanotubes, CNT detectors
Abstract The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1783
Permanent link to this record
 

 
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N.
Title Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
Year 2016 Publication Semicond. Abbreviated Journal Semicond.
Volume 50 Issue 12 Pages 1600-1603
Keywords carbon nanotubes, CNT detectors
Abstract Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1776
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Ibragimov, R. A.; Stepanova, T. S.; Gazaliev, A. S.; Vysochanskiy, N. A.; Bobrov, Y. A.; Malovichko, A. M.; Sosnin, I. M.; Bobrinetskiy, I. I.
Title Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles Type Journal Article
Year 2016 Publication Chem. Ind. Belgrade Abbreviated Journal Chem. Ind. Belgrade
Volume 70 Issue 1 Pages 1-8
Keywords carbon nanotubes, CNT, reverse micelles
Abstract We report on a method of synthesis of single-walled carbon nanotubes percolated networks on silicon dioxide substrates using monodisperse Co and Ni catalyst. The catalytic nanoparticles were obtained by modified method of reverse micelles of bis-(2-ethylhexyl) sulfosuccinate sodium in isooctane solution that provides the nanoparticle size control in range of 1 to 5 nm. The metallic nanoparticles of Ni and Co were characterized using transmission electron microscopy (TEM) and atomic-force microscopy (AFM). Carbon nanotubes were synthesized by chemical vapor deposition of CH4/H2 composition at temperature 1000 °С on catalysts pre-deposited on silicon dioxide substrate. Before temperature treatment during the carbon nanotube synthesis most of the catalyst material agglomerates due to magnetic forces while during the nanotube growth disintegrates into the separate nanoparticles with narrow diameter distribution. The formed nanotube networks were characterized using AFM, scanning electron microscopy (SEM) and Raman spectroscopy. We find that the nanotubes are mainly single-walled carbon nanotubes with high structural perfection up to 200 μm long with diameters from 1.3 to 1.7 nm consistent with catalyst nanoparticles diameter distribution and independent of its material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0367-598X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1779
Permanent link to this record
 

 
Author Gorokhov, G.; Bychanok, D.; Gayduchenko, I.; Rogov, Y.; Zhukova, E.; Zhukov, S.; Kadyrov, L.; Fedorov, G.; Ivanov, E.; Kotsilkova, R.; Macutkevic, J.; Kuzhir, P.
Title THz spectroscopy as a versatile tool for filler distribution diagnostics in polymer nanocomposites Type Journal Article
Year 2020 Publication Polymers (Basel) Abbreviated Journal Polymers (Basel)
Volume 12 Issue 12 Pages 3037 (1 to 14)
Keywords THz spectroscopy; nanocomposites, percolation threshold, time-domain spectroscopy, time-domain spectrometer, TDS
Abstract Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes. The THz peak of permittivity's imaginary part predicted by the applied model was experimentally shown for GNP-containing composites both below and above the percolation threshold. The physical nature of the peak was explained by the impact on filler particles excluded from the percolation network due to the peculiarities of filler distribution. Terahertz spectroscopy as a versatile instrument of filler distribution diagnostics is discussed.
Address Institute of Photonics, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4360 ISBN Medium
Area Expedition Conference
Notes PMID:33353036; PMCID:PMC7767186 Approved no
Call Number Serial 1780
Permanent link to this record