|   | 
Details
   web
Records
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Goltsman, G. N.; Verevkin, A. A.; Toropov, A. I.; Mauskopf, P.
Title Concentration dependence of energy relaxation time in AlGaAs/GaAs heterojunctions: direct measurements Type Journal Article
Year 2011 Publication Semicond. Sci. Technol. Abbreviated Journal Semicond. Sci. Technol.
Volume 26 Issue 2 Pages 025013
Keywords AlGaAs/GaAs heterojunctions
Abstract We present measurements of the energy relaxation time, τε, of electrons in a single heterojunction in a quasi-equilibrium state using microwave time-resolved spectroscopy at 4.2 K. We find the relaxation time has a power-law dependence on the carrier density of the two-dimensional electron gas, τε∝nγs with γ = 0.40 ± 0.02 for values of the carrier density, ns, from 1.6 × 1011 to 6.6 × 1011cm−2. The results are in good agreement with predictions taking into account the scattering of the carriers by both piezoelectric and deformation potential acoustic phonons. We compare these results with indirect measurements of the energy relaxation time from energy loss measurements involving Joule heating of the electron gas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1215
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Stysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R.
Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL
Volume 2 Issue Pages 282-285
Keywords NbN SSPD, SNSPD
Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 /spl mu/m/sup 2/ in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 /spl mu/m and 1.55 /spl mu/m telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-helium storage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be <300 ps and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is <35 ps and their dark-count rate is below 1 s/sup -1/. The presented performance parameters show that our single-photon receivers are fully applicable for quantum-correlation-type QC systems, including practical quantum cryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers
Notes Approved no
Call Number Serial 1462
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N.
Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW
Volume 2 Issue Pages 558-560
Keywords AlGaAs/GaAs HEB mixers
Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.
Address Kharkov, Ukraine
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)
Notes Approved no
Call Number Serial 1487
Permanent link to this record
 

 
Author Kardakova, A. I.; Coumou, P. C. J. J.; Finkel, M. I.; Morozov, D. V.; An, P. P.; Goltsman, G. N.; Klapwijk, T. M.
Title Electron–phonon energy relaxation time in thin strongly disordered titanium nitride films Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 1-4
Keywords TiN MKID
Abstract We have measured the energy relaxation times from the electron bath to the phonon bath in strongly disordered TiN films grown by atomic layer deposition. The measured values of τ eph vary from 12 to 91 ns. Over a temperature range from 3.4 to 1.7 K, they follow T -3 temperature dependence, which are consistent with values of τ eph reported previously for sputtered TiN films. For the most disordered film, with an effective elastic mean free path of 0.35 nm, we find a faster relaxation and a stronger temperature dependence, which may be an additional indication of the influence of strong disorder on a superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1296
Permanent link to this record
 

 
Author Titova, N.; Kardakova, A. I.; Tovpeko, N.; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S. R.; Williams, O. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Slow electron–phonon cooling in superconducting diamond films Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords superconducting diamond films, electron-phonon cooling
Abstract We have measured the electron-phonon energy-relaxation time, τ eph , in superconducting boron-doped diamond films grown on silicon substrate by chemical vapor deposition. The observed electron-phonon cooling times vary from 160 ns at 2.70 K to 410 ns at 1.8 K following a T -2-dependence. The data are consistent with the values of τ eph previously reported for single-crystal boron-doped diamond films epitaxially grown on diamond substrate. Such a noticeable slow electron-phonon relaxation in boron-doped diamond, in combination with a high normal-state resistivity, confirms a potential of superconducting diamond for ultrasensitive superconducting bolometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1168
Permanent link to this record