toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
 

 
Author Shurakov, A.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Microwave stabilization of a HEB mixer in a pulse-tube cryocooler Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 1501504-1501504  
  Keywords NbN HEB mixers  
  Abstract We report the results of our study of the stability of an 800 GHz hot electron bolometer (HEB) mixer cooled with a pulse-tube cryocooler. Pulse-tube cryocoolers introduce temperature fluctuations as well as mechanical vibrations at a frequency of ~1 Hz, both of which can cause receiver gain fluctuations at that frequency. In our system, the motor of the cryocooler was separated from the cryostat to minimize mechanical vibrations, leaving thermal effects as the dominant source of the receiver gain fluctuations. We measured root mean square temperature variations of the 4 K stage of ~7 mK. The HEB mixer was pumped by a solid state local oscillator at 810 GHz. The root mean square current fluctuations at the low noise operating point (1.50 mV, 56.5 μA) were ~0.12 μA, and were predominantly due to thermal fluctuations. To stabilize the bias current, microwave radiation was injected to the HEB mixer. The injected power level was set by a proportional-integral-derivative controller, which completely compensates for the bias current oscillations induced by the pulse-tube cryocooler. Significant improvement in the Allan variance of the receiver output power was obtained, and an Allan time of 5 s was measured.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1372  
Permanent link to this record
 

 
Author Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N. doi  openurl
  Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages 645-648  
  Keywords waveguide NbN HEB mixers  
  Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 720  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory doi  openurl
  Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 3 Pages 293-296  
  Keywords HEB mixer  
  Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 636  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory url  doi
openurl 
  Title Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 1 Pages 14-19  
  Keywords HEB, mixer, Allan variance, stabilization, radiometer equation  
  Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 559  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: