|   | 
Details
   web
Records
Author Minaeva, O.; Divochiy, A.; Korneev, A.; Sergienko, A. V.; Goltsman, G. N.
Title High speed infrared photon counting with photon number resolving superconducting single-photon detectors (SSPDs) Type Conference Article
Year 2009 Publication CLEO/Europe – EQEC Abbreviated Journal CLEO/Europe – EQEC
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract A review of development and characterization of the nanostructures consisting of several meander sections, all connected in parallel was presented. Such geometry leads to a significant decrease of the kinetic inductance, without a decrease of the SSPD active area. A new type of SSPDs possess the QE of large-active- area devices, but, simultaneously, allows achieving short response times and the GHz-counting rate. This new generation of superconducting detectors has another significant advantage for quantum key distribution, they have a photon number resolving capability and can distinguish more photons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1399
Permanent link to this record
 

 
Author Rosfjord, K. M.; Yang, J. K. W.; Dauler, E. A.; Anant, V.; Berggren, K. K.; Kerman, A. J.; Voronov, B. M.; Gol’tsman, G. N.
Title Increased detection efficiencies of nanowire single-photon detectors by integration of an optical cavity and anti-reflection coating Type Conference Article
Year 2006 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages JTuF2 (1 to 2)
Keywords SSPD, SNSPD
Abstract We fabricate and test superconducting NbN-nanowire single-photon detectors with an integrated optical cavity and anti-reflection coating. We design the cavity and coating such as to maximize absorption in the NbN film of the detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1452
Permanent link to this record
 

 
Author Dauler, E. A.; Kerman, A. J.; Robinson, B. S.; Yang, J. K. W.; Voronov, B. M.; Gol’tsman, G. N.; Berggren, K. K.
Title Achieving high counting rates in superconducting nanowire single-photon detectors Type Conference Article
Year 2006 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages JTuD3 (1 to 2)
Keywords SSPD; SNSPD; Detectors; Photodetectors; Quantum optics; Quantum detectors; Photon counting; Photons; Pulse shaping; Quantum communications; Single photon detectors; Superconductors
Abstract Kinetic inductance is determined to be the primary limitation to the counting rate of superconducting nanowire single-photon counters. Approaches for overcoming this limitation will be discussed.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies
Notes Approved no
Call Number Serial 1451
Permanent link to this record
 

 
Author Xu, Y.; Zheng, X.; Williams, C.; Verevkin, A.; Sobolewski, R.; Chulkova, G.; Lipatov, A.; Okunev, O.; Smirnov, K.; Gol’tsman, G. N.
Title Ultrafast superconducting hot-electron single-photon detector Type Conference Article
Year 2001 Publication CLEO Abbreviated Journal CLEO
Volume Issue Pages 345
Keywords NbN SSPD, SNSPD
Abstract Summary form only given. The current most-pressing need is to develop a practical, GHz-range counting single-photon detector, operational at either 1.3-/spl mu/m or 1.55-/spl mu/m radiation wavelength, for novel quantum communication and quantum cryptography systems. The presented solution of the problem is to use an ultrafast hot-electron photodetector, based on superconducting thin-film microstructures. This type of device is very promising, due to the macroscopic quantum nature of superconductors. Very fast response time and the small, (meV range) value of the superconducting energy gap characterize the superconductor, leading to the efficient avalanche process even for infrared photons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170)
Notes Approved no
Call Number Serial 1545
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Stysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R.
Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL
Volume 2 Issue Pages 282-285
Keywords NbN SSPD, SNSPD
Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 /spl mu/m/sup 2/ in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 /spl mu/m and 1.55 /spl mu/m telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-helium storage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be <300 ps and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is <35 ps and their dark-count rate is below 1 s/sup -1/. The presented performance parameters show that our single-photon receivers are fully applicable for quantum-correlation-type QC systems, including practical quantum cryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers
Notes Approved no
Call Number Serial 1462
Permanent link to this record