toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blundell, R.; Barrett, J.; H. Gibson, C. Gotteib; Hunter, T.; Kimberk, R.; Leiker, S.; Marrone, D.; Meledin, D.; Paine, S.; Papa, D. C.; Plante, R.; Riddle, P.; Smith, M.; Sridharan, T.; Tong, C. E.; Wilson, R.; Diaz, M.; Bronfman, L.; May, J.; Otarola, A.; Radford, S. J. openurl 
  Title Prospects for terahertz radio astronomy from Northean Chile Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 159-166  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, MA, USA Editor Harvard university  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ meledin_2p5_stability Serial 327  
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene url  openurl
  Title First light with an 800 GHz phonon-cooled HEB mixer receiver Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 35-43  
  Keywords HEB, mixer, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract Phonon-cooled superconductive hot-electron bolometric (HEB) mixers are incorporated in a waveguide receiver designed to operate near 800 Gliz. The mixer elements are thin-film nio- bium nitride microbridges with dimensions of 4 nm thickness, 0.2 to 0.3 p.m in length and 2 jun in width. At 780 GHz the best receiver noise temperature is 840 K (DSB). The mixer IF bandwidth is 2.0 GHz, the absorbed LO power is —0.1 1.1W. A fixed-tuned version of the re- ceiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, Arizona, to conduct astronomical observations. These observations represent the first time that a receiver incorporating any superconducting HEB mixer has been used to detect a spectral line of celes- tial origin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, California, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 572  
Permanent link to this record
 

 
Author Cao, Q.; Yoon, S. F.; Tong, C. Z.; Ngo, C. Y.; Liu, C. Y.; Wang, R.; Zhao, H. X. openurl 
  Title Two-state competition in 1.3 μm multilayer InAs/InGaAs quantum dot lasers Type Journal Article
  Year 2009 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 95 Issue 19 Pages 3  
  Keywords 2DEG  
  Abstract The competition of ground state (GS) and excited state (ES) is investigated from the as-grown and thermally annealed 1.3 μm ten-layer p-doped InAs/GaAs quantum dot (QD) lasers. The modal gain competition between GS and ES are measured and analyzed around the ES threshold characteristics. Our results show that two-state competition is more significant in devices with short cavity length operating at high temperature. By comparing the as-grown and annealed devices, we demonstrate enhanced GS and suppressed ES lasing from the QD laser annealed at 600 °C for 15 s.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 673  
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, C.; Blundell, R.; Gol'tsman, G. url  openurl
  Title A study of direct detection effect on the linearity of hot electron bolometer mixers Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages 282-287  
  Keywords HEB mixer, direct detection effect  
  Abstract We have performed a study of how direct detection affects the linearity and hence the calibration of an HEB mixer. Two types of waveguide HEB devices have been used: a 0.8 THz HEB mixer and a 1.0 THz HEB mixer which is ~5 times smaller than the former. Two independent experimental approaches were used. In the ΔG/G method, the conversion gain of the HEB mixer is first measured as a function of the bias current for a number of bias voltages. At each bias setting, we carefully measure the change in the operating current when the input loads are switched. From the measured data, we can derive the expected difference in gain between the hot and cold loads. In the second method (injection method [1]), the linearity of the HEB mixer is independently measured by injecting a modulated signal for different input load temperatures. The results of both approaches confirm that there is gain compression in the operation of HEB mixers. Based on the results of our measurements, we discuss the impact of direct detection effects on the operation of HEB mixers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 724  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B. url  openurl
  Title Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 331-336  
  Keywords NbN HEB mixers  
  Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 945  
Permanent link to this record
 

 
Author Trifonov, Andrey; Tong, C. Edward; Lobanov, Yury; Kaurova, Natalia; Blundell, Raymond; Gol’tsman, Gregory url  openurl
  Title An investigation of the DC and IF performance of silicon-membrane HEB mixer elements Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 40  
  Keywords silicon-membrane HEB waveguide mixer  
  Abstract We report on our initial development towards a 2x2 multi-pixel HEB waveguide mixer for operation at 1.4 THz. We have successfully fabricated devices comprising an NbN bridge integrated with antenna test structure using a silicon membrane as the supporting substrate. DC measurements of the test chips demonstrate critical current from 0.1 – 1mA depending on the size of device, with T c of around 10 K and ΔTc ~ 0.8 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1160  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  openurl
  Title Gap frequency and photon absorption in a hot electron bolometer Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 121  
  Keywords NbN HEB; Si membrane  
  Abstract The superconducting energy gap is a crucial parameter of a superconductor when used in mixing applications. In the case of the SIS mixer, the mixing process is efficient for frequencies below the energy gap, whereas, in the case of the HEB mixer, the mixing process is most efficient at frequencies above the gap, where photon absorption takes place more readily. We have investigated the photon absorption phenomenon around the gap frequency of HEB mixers based on NbN films deposited on silicon membranes. Apart from studying the pumped I-V curves of HEB devices, we have also probed them with microwave radiation, as previously described [1]. At frequencies far below the gap frequency, the pumped I-V curves show abrupt switching between the superconducting and resistive states. For the NbN HEB mixers we tested, which have critical temperatures of ~9 K, this is true for frequencies below about 400 GHz. As the pump frequency is increased beyond 400 GHz, the resistive state extends towards zero bias and at some point a small region of negative differential resistance appears close to zero bias. In this region, the microwave probe reveals that the device impedance is changing randomly with time. As the pump frequency is further increased, this random impedance change develops into relaxation oscillations, which can be observed by the demodulation of the reflected microwave probe. Initially, these oscillations take the form of several frequencies grouped together under an envelope. As we approach the gap frequency, the multiple frequency relaxation oscillations coalesce into a single frequency of a few MHz. The resultant square-wave nature of the oscillation is a clear indication that the device is in a bi-stable state, switching between the superconducting and normal state. Above the gap frequency, it is possible to obtain a pumped I-V curve with no negative differential resistance above a threshold pumping level. Below this pumping level, the device demonstrates bi-stability, and regular relaxation oscillation at a few MHz is observed as a function of pump power. The threshold pumping level is clearly related to the amount of power absorbed by the device and its phonon cooling. From the above experiment, we can derive the gap frequency of the NbN film, which is 585 GHz for our 6 μm thin silicon membrane-based device. We also confirm that the HEB mixer is not an efficient photon absorber for radiation below the gap frequency. 1. A. Trifonov et al., “Probing the stability of HEB mixers with microwave injection”, IEEE Trans. Appl. Supercond., vol. 25, no. 3, June 2015.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1204  
Permanent link to this record
 

 
Author Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory url  openurl
  Title A digital terahertz power meter based on an NbN thin film Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 170  
  Keywords waveguide NbN HEB mixers  
  Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1366  
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y.E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G. url  openurl
  Title An investigation of the performance of the waveguide superconducting HEB mixer at different RF embedding impedances Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 226-229  
  Keywords waveguide NbN HEB mixers  
  Abstract We have conducted an investigation of the performance of superconducting hot-electron bolometric (HEB) mixer at 800 GHz as a function of the embedding impedance of the waveguide embedding circuit. Using a single half-height mixer block, we have developed three different mixer chip configurations, offering nominal embedding resistances of 70, 35, and 15 Ohms. Both the High Frequency Structure Simulator (HFSS) software and scaled model impedance measurements were employed in the design process. Two batches of HEB mixers were fabricated to these designs using 3-4 nm thick NbN thin film. The mixers were characterized through receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans. Briefly, a minimum receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer of normal state resistance 62 Ohms incorporated into a circuit offering a nominal embedding impedance of 70 Ohms. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to that of the embedding impedance of the mixer mount.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1472  
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y. E.; Marrone, D. P.; Ryabchun, S.; Paine, S. N.; Blundell, R. url  openurl
  Title Transmission measurements of infrared filters for low-noise terahertz receiver applications Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 354-357  
  Keywords FTS, Zitex, alkali halide, crystalline quartz, Parylene, polyethylene, IR filters, transmission, THz applications  
  Abstract Infrared (IR) filters are very important to the efficient operation of cryogenic receivers. Usually, such filters are mounted on the radiation shield of the cryostat to reduce the heat load to the 4 K stage. Insufficient filtering may cause the temperature of the mixing element in a receiver to be excessively warm, leading to degradation in sensitivity. These filters should be effective in blocking the room temperature IR radiation from outside the cryostat, yet should be transparent across the desired signal frequency band. In the Terahertz frequency range, which is close to the infrared, it is difficult to find an inexpensive low- loss material that can provide the required IR blocking capacity. We present transmission measurements, made using a Fourier Transform Spectrometer (FTS), of a number of potential infrared filters between 0.4 and 1.6 THz. The filters tested include the widely-used, Teflon-based, Zitex-A and Zitex-G films, alkali halide based infrared filter, and crystalline quartz coated with Parylene, and polyethylene films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1473  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: