|   | 
Details
   web
Records
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N.
Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 4 Pages L (9 to 12)
Keywords NbN HEB mixers
Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1456
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R.
Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 54 Issue 2-3 Pages 315-326
Keywords NbN SSPD, SNSPD
Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1434
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N.
Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 87 Issue 1 Pages 502-510
Keywords NbN HEB mixers, nonthermal
Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1558
Permanent link to this record
 

 
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N.
Title A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 100 Issue 13 Pages 131104 (1 to 4)
Keywords semiconductor superlattice
Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1379
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.‐yu E.; Gol’tsman, G.; Gershenzon, E.; Voronov, B.
Title Performance of NbN lattice‐cooled hot‐electron bolometric mixers Type Journal Article
Year 1996 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 80 Issue 7 Pages 4232-4234
Keywords NbN HEB mixers
Abstract The heterodyne performance of lattice‐cooled hot‐electron bolometric mixers is measured at 200 GHz. Superconducting thin‐film niobium nitride strips with ∼5 nm thickness are used as waveguide mixer elements. A double‐sideband receiver noise temperature of 750 K at 244 GHz is measured at an intermediate frequency centered at 1.5 GHz with 500 MHz bandwidth and with 4.2 K device temperature. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator power required by the mixer is about 0.5 μW. The mixer is linear to within 1 dB up to an input power level 6 dB below the local oscillator power. A receiver incorporating a hot‐electron bolometric mixer was used to detect molecular line emission in a laboratory gascell. This experiment unambiguously confirms that the receiver noise temperature determined from Y‐factor measurements reflects the true heterodyne sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1607
Permanent link to this record