toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S. url  doi
openurl 
  Title Terahertz detection in single wall carbon nanotubes Type Journal Article
  Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue 3 Pages 033105  
  Keywords HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz  
  Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition (up) Conference  
  Notes NEP is not shown Approved no  
  Call Number Serial 566  
Permanent link to this record
 

 
Author Kampfrath, Tobias; Perfetti, Luca; von Volkmann, Konrad; Aguirre, Carla M.; Desjardins, Patrick; Martel, Richard; Frischkorn, Christian; Wolf, Martin url  doi
openurl 
  Title Optical response of single-wall carbon nanotube sheets in the far-infrared spectral range from 1 THz to 40 THz Type Journal Article
  Year 2007 Publication Physica Status Solidi (B) Abbreviated Journal Phys. Stat. Sol. (B)  
  Volume 244 Issue 11 Pages 3950-3954  
  Keywords single wall, carbon nanotube, SWNT, SWCNT, CNT, detector, sensor, TDS  
  Abstract The optical properties of single-wall carbon nanotube sheets in the far-infrared have been investigated with THz time-domain spectroscopy. Over a wide frequency range from 1 THz to 40 THz, the complex dielectric function of the nanotube sample has been derived. Our data can be excellently reproduced by a Drude-Lorentz model function. The extracted fit parameters such as Lorentz resonance frequency and plasma frequency are consistent with values obtained by scanning tunneling techniques. We discuss the origin of both the Lorentz and Drude contribution in terms of direct and indirect optical transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number Serial 569  
Permanent link to this record
 

 
Author Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R. url  doi
openurl 
  Title Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers Type Journal Article
  Year 2017 Publication Beilstein J. Nanotechnol. Abbreviated Journal Beilstein J. Nanotechnol.  
  Volume 8 Issue Pages 38-44  
  Keywords carbon nanotubes; CNT; infrared; integrated optics devices; nanomaterials  
  Abstract Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.  
  Address Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Darmstadt 64287, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286 ISBN Medium  
  Area Expedition (up) Conference  
  Notes PMID:28144563; PMCID:PMC5238692 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1109  
Permanent link to this record
 

 
Author Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G. url  doi
openurl 
  Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
  Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 118 Issue 19 Pages 194303  
  Keywords terahertz detectors, asymmetric carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number Serial 1169  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G. url  doi
openurl 
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
  Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 103 Issue 18 Pages 181121 (1 to 5)  
  Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate  
  Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number Serial 1171  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: