|   | 
Details
   web
Records
Author Seliverstov, S.; Maslennikov, S.; Ryabchun, S.; Finkel, M.; Klapwijk, T. M.; Kaurova, N.; Vachtomin, Yu.; Smirnov, K.; Voronov, B.; Goltsman, G.
Title Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300304
Keywords HEB detector responsivity, HEB model, numerical calculations, numerical model
Abstract We characterize superconducting antenna-coupled hot-electron bolometers for direct detection of terahertz radiation operating at a temperature of 9.0 K. The estimated value of responsivity obtained from lumped-element theory is strongly different from the measured one. A numerical calculation of the detector responsivity is developed, using the Euler method, applied to the system of heat balance equations written in recurrent form. This distributed element model takes into account the effect of nonuniform heating of the detector along its length and provides results that are in better agreement with the experiment. At a signal frequency of 2.5 THz, the measured value of the optical detector noise equivalent power is 2.0 × 10-13 W · Hz-0.5. The value of the bolometer time constant is 35 ps. The corresponding energy resolution is about 3 aJ. This detector has a sensitivity similar to that of the state-of-the-art sub-millimeter detectors operating at accessible cryogenic temperatures, but with a response time several orders of magnitude shorter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 953
Permanent link to this record
 

 
Author Jiang, Leaf A.; Luu, Jane X.
Title Heterodyne detection with a weak local oscillator Type Journal Article
Year 2008 Publication Appl. Opt. Abbreviated Journal Appl. Opt.
Volume 47 Issue 10 Pages 1486-1503
Keywords weak local oscillator, weak LO, photon-counting detector, photon-counting mixer, counter detector, counter mixer, PD mixer, PCD mixer
Abstract eterodyne detection in the limit of weak (a few photons) local oscillator and signal power levels has been largely neglected in the past, as authors almost always assumed that the noise was dominated by the shot noise from a strong local oscillator. We present the theory for heterodyne detection of diffuse and specular targets at arbitrary power levels, including the case where the local oscillator power is only a few photons per coherent integration period. The theory was tested with experimental results, and was found to show good agreement. We show how to interpret the power spectral density of the heterodyne signal and how to determine the optimal number of signal and local oscillator photons per coherent integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 979
Permanent link to this record
 

 
Author Palma, F.; Teppe, F.; Fatimy, A. E.; Green, R.; Xu, J.; Vachontin, Y.; Tredicucci, A.; Goltsman, G.; Knap, W.
Title THz communication system based on a THz quantum cascade laser and a hot electron bolometer Type Conference Article
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves
Volume Issue Pages 11623798 (1 to 2)
Keywords QCL, HEB detector
Abstract We present the experimental study of the direct emission – detection system based on the THz Quantum Cascade Laser as a source and Hot Electron Bolometer (HEB) detector – in view of its application as an optical communication system. We show that the system can efficiently transmit the QCL Terahertz pulses. We estimate the maximal modulation speed of the system to be about several GHz and show that it is limited only by the QCL pulse power supply, detector amplifier and connection line/wires parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1391
Permanent link to this record
 

 
Author Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong
Title Photon-counting chirped amplitude modulation lidar using a smart premixing method Type Journal Article
Year 2013 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 38 Issue 21 Pages 4389-4392
Keywords photon-counting detector, lidar, Geiger mode APD, Geiger mode lidar
Abstract We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1006
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Divochiy, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.; Lagoudakis, K.G.; Benkahoul, M.; Lévy, F.; Fiore, A.
Title Superconducting nanowire photon number resolving detector at telecom wavelength Type Conference Article
Year 2008 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages Qmj1 (1 to 2)
Keywords PNR SSPD; SNSPD; Detectors; Infrared; Low light level; Diode lasers; Photons; Scanning electron microscopy; Superconductors; Ti:sapphire lasers
Abstract We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-55752-859-9 Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Marsili:08 Serial 1243
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Perepelitsa, A.; Ryabchun, S.; Kaurova, N.; Shurakov, A.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Ag2S QDs/Si heterostructure-based ultrasensitive SWIR range detector Type Journal Article
Year 2020 Publication Nanomaterials (Basel) Abbreviated Journal Nanomaterials (Basel)
Volume 10 Issue 5 Pages 1-12
Keywords detector; quantum dots; short-wave infrared range; silicon
Abstract In the 20(th) century, microelectronics was revolutionized by silicon-its semiconducting properties finally made it possible to reduce the size of electronic components to a few nanometers. The ability to control the semiconducting properties of Si on the nanometer scale promises a breakthrough in the development of Si-based technologies. In this paper, we present the results of our experimental studies of the photovoltaic effect in Ag2S QD/Si heterostructures in the short-wave infrared range. At room temperature, the Ag2S/Si heterostructures offer a noise-equivalent power of 1.1 x 10(-10) W/ radicalHz. The spectral analysis of the photoresponse of the Ag2S/Si heterostructures has made it possible to identify two main mechanisms behind it: the absorption of IR radiation by defects in the crystalline structure of the Ag2S QDs or by quantum QD-induced surface states in Si. This study has demonstrated an effective and low-cost way to create a sensitive room temperature SWIR photodetector which would be compatible with the Si complementary metal oxide semiconductor technology.
Address Laboratory of nonlinear optics, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan 420029, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Medium
Area Expedition (up) Conference
Notes PMID:32365694; PMCID:PMC7712218 Approved no
Call Number Serial 1151
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G.
Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713828 (1 to 5)
Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared
Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number 10.1117/12.818079 Serial 1241
Permanent link to this record
 

 
Author Minaeva, O.; Fraine, A.; Korneev, A.; Divochiy, A.; Goltsman, G.; Sergienko, A.
Title High resolution optical time-domain reflectometry using superconducting single-photon detectors Type Conference Article
Year 2012 Publication Frontiers in Opt. 2012/Laser Sci. XXVIII Abbreviated Journal Frontiers in Opt. 2012/Laser Sci. XXVIII
Volume Issue Pages Fw3a.39
Keywords SSPD, SNSPD, Photodetectors; Fiber characterization; Light beams; Optical time domain reflectometry; Photon counting; Single mode fibers; Single photon detectors; Superconductors
Abstract We discuss the advantages and limitations of single-photon optical time-domain reflectometry with superconducting single-photon detectors. The higher two-point resolution can be achieved due to superior timing performance of SSPDs in comparison with InGaAs APDs.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1237
Permanent link to this record
 

 
Author Angeluts, A. A.; Bezotosnyi, V. V.; Cheshev, E. A.; Goltsman, G. N.; Finkel, M. I.; Seliverstov, S. V.; Evdokimov, M. N.; Gorbunkov, M. V.; Kitaeva, G. Kh.; Koromyslov, A. L.; Kostryukov, P. V.; Krivonos, M. S.; Lobanov, Yu. V.; Shkurinov, A. P.; Sarkisov, S. Yu.; Tunkin, V. G.
Title Compact 1.64 THz source based on a dual-wavelength diode end-pumped Nd:YLF laser with a nearly semiconfocal cavity Type Journal Article
Year 2014 Publication Laser Phys. Lett. Abbreviated Journal
Volume 11 Issue 1 Pages 015004 (1 to 4)
Keywords HEB applications, HEB detector applications, short THz pulses detection
Abstract We describe a compact dual-wavelength (1.047 and 1.053 μm) diode end-pumped Q-switched Nd:YLE laser source which has a number of applications in demand. In order to achieve its dual-wavelength operation it is suggested for the first time to use essentially nonmonotonous dependences of the threshold pump powers at these wavelengths on the cavity length in the region of the cavity semiconfocal configuration under a radius of the pump beam smaller than the radius of the zero Gaussian mode. Here we demonstrate one of the most interesting applications for this laser: difference frequency generation in a GaSe crystal at a frequency of 1.64 THz. A superconducting hot-electron bolometer is used to detect the THz power generated and to measure its pulse characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1076
Permanent link to this record
 

 
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
Title Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 10 Issue 11 Pages 727-732
Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector
Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1105
Permanent link to this record