toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lobanov, Yury; Shcherbatenko, Michael; Shurakov, Alexander; Rodin, Alexander V.; Klimchuk, Artem; Nadezhdinsky, Alexander I.; Maslennikov, Sergey; Larionov, Pavel; Finkel, Matvey; Semenov, Alexander; Verevkin, Aleksandr A.; Voronov, Boris M.; Ponurovsky, Yakov; Klapwijk, Teunis M.; Gol'tsman, Gregory N. url  doi
openurl 
  Title Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer Type Journal Article
  Year 2014 Publication Opt. Lett. Abbreviated Journal  
  Volume 39 Issue 6 Pages 1429-1432  
  Keywords HEB, zebra, IR, infrared  
  Abstract We report on the development of a highly sensitive optical receiver for heterodyne IR spectroscopy at the communication wavelength of 1.5 μm (200 THz) by use of a superconducting hot-electron bolometer. The results are important for the resolution of narrow spectral molecular lines in the near-IR range for the study of astronomical objects, as well as for quantum optical tomography and fiber-optic sensing. Receiver configuration as well as fiber-to-detector light coupling designs are discussed. Light absorption of the superconducting detectors was enhanced by nano-optical antennas, which were coupled to optical fibers. An intermediate frequency (IF) bandwidth of about 3 GHz was found in agreement with measurements at 300 GHz, and a noise figure of about 25 dB was obtained that was only 10 dB above the quantum limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 906  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Tong, Cheuk-Yu E.; Hedden, A. S.; Blundell, R.; Gol'tsman, G. N. openurl 
  Title Microwave-assisted슠measurement슠of the슠frequency슠response슠of슠terahertz슠HEB슠mixers슠with a슠fourier슠transform슠spectrometer Type Conference Article
  Year 2010 Publication 21st International Symposium on Space Terahertz Technology Abbreviated Journal 21st ISSTT  
  Volume Issue Pages 420-423  
  Keywords HEB mixer  
  Abstract We describe a novel method of operation of the HEB direct detector for use with a Fourier Transform Spectrometer. Instead of elevating the bath temperature, we have measured the RF response of waveguide HEB mixers by applying microwave radiation to select appropriate bias conditions. In our experiment, a microwave signal is injected into the HEB mixer via its IF port. By choosing an appropriate injection level, the device can be operated close to the desired operating point. Furthermore, we have shown that both thermal biasing and microwave injection can reproduce the same spectral response of the HEB mixer. However, with the use of microwave injection, there is no need to wait for the mixer to reach thermal equilibrium, so characterisation can be done in less time. Also, the liquid helium consumption for our wet cryostat is also reduced. We have demonstrated that the signalto-noise ratio of the FTS measurements can be improved with microwave injection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 725  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Khabibullin, R. A.; Shchavruk, N. V.; Smirnov, K. V.; Silaev, A. A. url  doi
openurl 
  Title Characterization of the THz quantum cascade laser using fast superconducting hot electron bolometer Type Journal Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 04004 (1 to 2)  
  Keywords NbN HEB, QCL  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference 3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)  
  Notes Approved no  
  Call Number Serial 1808  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A. url  doi
openurl 
  Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
  Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering  
  Volume 60 Issue 8 Pages 1-8  
  Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer  
  Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/1.Oe.60.8.082019 Serial 1260  
Permanent link to this record
 

 
Author Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N. doi  openurl
  Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages 645-648  
  Keywords waveguide NbN HEB mixers  
  Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 720  
Permanent link to this record
 

 
Author Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M. doi  openurl
  Title Excitation of the molecular gas in the nuclear region of M 82 Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L2  
  Keywords HEB mixer applications, HIFI, Herschel, galaxies: individual: M 82 / submillimeter: ISM / ISM: molecules / galaxies: ISM / galaxies: starburst  
  Abstract We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1097  
Permanent link to this record
 

 
Author Loudkov, D.; Khosropanah, P.; Cherednichenko, S.; Adam, A.; MerkeI, H.; Kollberg, E.; Gol'tsman, G. url  openurl
  Title Broadband fourier transform spectrometer (FTS) measurements of spiral and double-slot planar antennas at THz frequencies Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 373-369  
  Keywords NbN HEB mixers  
  Abstract The direct responses of NbN phonon-cooled hot electron bolometer (HEB) mixers, integrated with different planar antennas, are measured, using Fourier Transform Spectrometer (F1S). One spiral antenna and several double slot antennas, designed for 0.6, 1.4, 1.6, 1.8 and 2.5 THz central frequencies, are investigated. The Optimization of the measurement set-up is discussed in terms of the beam splitter and the F11S-to-HEB coupling. The result shows that the spiral antenna is circular polarized and has a bandwidth of about 2 THz. The frequency bands of double slot antennas show some shift from the design values and their relative bandwidth increases by increasing the design frequency. The antenna responses do not depend on the HEB bias point and temperature, as long as the device is in the resistive state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1530  
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 472-475  
  Keywords waveguide NbN HEB mixers  
  Abstract We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 1439677 Serial 1464  
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y.E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G. url  openurl
  Title An investigation of the performance of the waveguide superconducting HEB mixer at different RF embedding impedances Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 226-229  
  Keywords waveguide NbN HEB mixers  
  Abstract We have conducted an investigation of the performance of superconducting hot-electron bolometric (HEB) mixer at 800 GHz as a function of the embedding impedance of the waveguide embedding circuit. Using a single half-height mixer block, we have developed three different mixer chip configurations, offering nominal embedding resistances of 70, 35, and 15 Ohms. Both the High Frequency Structure Simulator (HFSS) software and scaled model impedance measurements were employed in the design process. Two batches of HEB mixers were fabricated to these designs using 3-4 nm thick NbN thin film. The mixers were characterized through receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans. Briefly, a minimum receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer of normal state resistance 62 Ohms incorporated into a circuit offering a nominal embedding impedance of 70 Ohms. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to that of the embedding impedance of the mixer mount.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1472  
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C. Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G. openurl 
  Title An investigation of the performance of the superconducting HEB슠mixer as a function of its RF슠embedding impedance Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 15 Issue 2 Pages 472-475  
  Keywords HEB mixer  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 371  
Permanent link to this record
 

 
Author Maezawa, Hiroyuki openurl 
  Title Application of superconducting hot-electron bolometer mixers for terahertz-band astronomy Type Journal Article
  Year 2015 Publication IEICE Trans. Electronics Abbreviated Journal  
  Volume 98 Issue 3 Pages 196-206  
  Keywords HEB mixer applications, HEB applications  
  Abstract Recently, a next-generation heterodyne mixer detector – a hot electron bolometer (HEB) mixer employing a superconducting microbridge – has gradually opened up terahertz-band astronomy. The surrounding state-of-the-art technologies including fabrication processes, 4 K cryostats, cryogenic low-noise amplifiers, local oscillator sources, micromachining techniques, and spectrometers, as well as the HEB mixers, have played a valuable role in the development of super-low-noise heterodyne spectroscopy systems for the terahertz band. The current developmental status of terahertz-band HEB mixer receivers and their applications for spectroscopy and astronomy with ground-based, airborne, and satellite telescopes are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1073  
Permanent link to this record
 

 
Author Maret, S.; Bacmann, A.; Bottinelli, S.; Parise, B.; Caux, E.; Faure, A.; Bergin, E. A.; Blake, G. A.; Castets, A.; Ceccarelli, C.; Cernicharo, J.; Coutens, A.; Crimier, N.; Demyk, K.; Dominik, C.; Gerin, M.; Hennebelle, P.; Henning, T.; Kahane, C.; Klotz, A.; Melnick, G.; Pagani, L.; Schilke, P.; Vastel, C.; Wakelam, V.; Walters, A.; Baudry, A.; Bell, T.; Benedettini, M.; Boogert, A.; Cabrit, S.; Caselli, P.; Codella, C.; Comito, C.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Goldsmith, P. F.; Helmich, F.; Herbst, E.; Jacq, T.; Kama, M.; Langer, W.; Lefloch, B.; Lis, D.; Lord, S.; Lorenzani, A.; Neufeld, D.; Nisini, B.; Pacheco, S.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Tak, F.; van der Wiel, M. H. D.; Viti, S.; Wyrowski, F.; Yorke, H. doi  openurl
  Title Nitrogen hydrides in the cold envelope of IRAS 16293-2422 Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L52  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: abundances / ISM: general / astrochemistry  
  Abstract Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS 16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78 THz at high spectral resolution. The hyperfine structure of the amidogen radical o-NH2 is resolved and seen in absorption against the continuum of the protostar. Several transitions of ammonia from 1.2 to 1.8 THz are also seen in absorption. These lines trace the low-density envelope of the protostar. Column densities and abundances are estimated for each hydride. We find that NH:NH2:NH3 â‰<2c6> 5:1:300. Dark clouds chemical models predict steady-state abundances of NH2 and NH3 in reasonable agreement with the present observations, whilst that of NH is underpredicted by more than one order of magnitude, even using updated kinetic rates. Additional modelling of the nitrogen gas-phase chemistry in dark-cloud conditions is necessary before having recourse to heterogen processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1094  
Permanent link to this record
 

 
Author Martini, F.; Cibella, S.; Gaggero, A.; Mattioli, F.; Leoni, R. url  doi
openurl 
  Title Waveguide integrated hot electron bolometer for classical and quantum photonics Type Journal Article
  Year 2021 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 29 Issue 6 Pages 7956-7965  
  Keywords waveguide HEB  
  Abstract The development of performant integrated detectors, which are sensitive to quantum fluctuations of coherent light, are strongly desired to realize a scalable and determinist photonic quantum processor based on continuous variables states of light. Here, we investigate the performance of hot electron bolometers (HEBs) fabricated on top of a silicon-on-insulator (SOI) photonic circuit showing responsivities up to 8600 V/W and a record noise equivalent temperature of 1.1 dB above the quantum limit. Thanks to a detailed analysis of the noise sources of the waveguide integrated HEB, we estimate 14.8 dBV clearance between the shot noise and electrical noise with just 1.1microW of local oscillator power. The full technology compatibility with superconducting nanowire single photon detectors (SNSPDs) opens the possibility of nonclassical state engineering and state tomography performed within the same platform, enabling a new class of optical quantum processors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33820252 Approved no  
  Call Number Serial 1212  
Permanent link to this record
 

 
Author Maslennikov, S. url  openurl
  Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
  Year 2014 Publication arXiv Abbreviated Journal arXiv  
  Volume 1404.5276 Issue Pages 1-4  
  Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method  
  Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 954  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M. url  openurl
  Title Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 177-179  
  Keywords directly coupled NbN HEB mixers  
  Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 386  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW  
  Volume 2 Issue Pages 558-560  
  Keywords AlGaAs/GaAs HEB mixers  
  Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 1487  
Permanent link to this record
 

 
Author Maslennikova, A.; Larionov, P.; Ryabchun, S.; Smirnov, A.; Pentin, I.; Vakhtomin, Yu.; Smirnov, K.; Kaurova, N.; Voronov, B.; Goltsman, G. url  openurl
  Title Noise equivalent power and dynamic range of NBN hot-electron bolometers Type Conference Article
  Year 2011 Publication Proc. MLPLIT Abbreviated Journal Proc. MLPLIT  
  Volume Issue Pages 146-148  
  Keywords NbN HEB  
  Abstract  
  Address Suzdal / Vladimir (Russia)  
  Corporate Author Thesis  
  Publisher Modern laser physics and laser-information technologies for science and manufacture Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 1st international russian-chinese conference / youthschool-workshop  
  Notes September 23-28, 2011 Approved no  
  Call Number Serial 1386  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. url  openurl
  Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 65-72  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, MA, USA Editor Harvard university  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 326  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 164-167  
  Keywords NbN HEB mixer  
  Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 341  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C.-Y. E.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Measurement of intermediate frequency bandwidth of hot electron bolometer mixers at terahertz frequency range Type Journal Article
  Year 2003 Publication IEEE Microw. Wireless Compon. Lett. Abbreviated Journal IEEE Microw. Wireless Compon. Lett.  
  Volume 13 Issue 11 Pages 493-495  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a new experimental setup for measuring the IF bandwidth of superconducting hot electron bolometer mixers. In our measurement system we use a chopped hot filament as a broadband signal source, and can perform a high-speed IF scan with no loss of accuracy when compared to coherent methods. Using this technique we have measured the 3 dB IF bandwidth of hot electron bolometer mixers, designed for THz frequency operation, and made from 3-4 nm thick NbN film deposited on an MgO buffer layer over crystalline quartz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1509  
Permanent link to this record
 

 
Author Meledin, Denis; Pavolotsky, Alexey; Desmaris, Vincent.; Lapkin, Igor; Risacher, Christophe; Perez, Victor; Henke, Douglas; Nystrom, Olle; Sundin, Erik; Dochev, Dimitar; Pantaleev, Miroslav; Fredrixon, Mathias; Strandberg, Magnus; Voronov, Boris; Goltsman, Gregory; Belitsky, Victor url  doi
openurl 
  Title A 1.3-THz balanced waveguide HEB mixer for the APEX telescope Type Journal Article
  Year 2009 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 57 Issue 1 Pages 89-98  
  Keywords HEB, mixer, waveguide, balanced, NbN  
  Abstract In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25–1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90×180 μm). We present details on the mixer design and measurement results, including receiver noise performance, stability and “first-light” at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 554  
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Melnick, G. J.; Tolls, V.; Neufeld, D. A.; Bergin, E. A.; Phillips, T. G.; Wang, S.; Crockett, N. R.; Bell, T. A.; Blake, G. A.; Cabrit, S.; Caux, E.; Ceccarelli, C.; Cernicharo, J.; Comito, C.; Daniel, F.; Dubernet, M.-L.; Emprechtinger, M.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Giesen, T. F.; Goicoechea, J. R.; Goldsmith, P. F.; Herbst, E.; Joblin, C.; Johnstone, D.; Langer, W. D.; Latter, W. D.; Lis, D. C.; Lord, S. D.; Maret, S.; Martin, P. G.; Menten, K. M.; Morris, P.; Müller, H. S. P.; Murphy, J. A.; Ossenkopf, V.; Pagani, L.; Pearson, J. C.; Pérault, M.; Plume, R.; Qin, S.-L.; Salez, M.; Schilke, P.; Schlemmer, S.; Stutzki, J.; Trappe, N.; van der Tak, F. F. S.; Vastel, C.; Yorke, H. W.; Yu, S.; Zmuidzinas, J. doi  openurl
  Title Herschel observations of EXtra-Ordinary Sources (HEXOS): Observations of H2O and its isotopologues towards Orion KL Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L27  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: abundances / ISM: molecules  
  Abstract We report the detection of more than 48 velocity-resolved ground rotational state transitions of H216O, H218O, and H217O – most for the first time – in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured H218O line fluxes, which are less affected by line opacity than their H216O counterparts, and an escape probability method, the column densities of H218O associated with each emission component are derived. We infer total water abundances of 7.4 × 10-5, 1.0 × 10-5, and 1.6 × 10-5 for the plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1098  
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
  Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal Proc. 28th European Microwave Conf.  
  Volume 1 Issue Pages 294-299  
  Keywords NbN HEB mixers  
  Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 28th European Microwave Conference  
  Notes Approved no  
  Call Number Serial 1580  
Permanent link to this record
 

 
Author Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A; Vacelet, T url  doi
openurl 
  Title Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges Type Journal Article
  Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal <ef><bf><bc>Appl. Phys. Lett.  
  Volume 104 Issue Pages 052605(1-4)  
  Keywords NbN HEB mixers, local oscillator power, RF nonuniform absorption  
  Abstract We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 935  
Permanent link to this record
 

 
Author Mookerjea, B.; Giesen, T.; Stutzki, J.; Cernicharo, J.; Goicoechea, J. R.; De Luca, M.; Bell, T. A.; Gupta, H.; Gerin, M.; Persson, C. M.; Sonnentrucker, P.; Makai, Z.; Black, J.; Boulanger, F.; Coutens, A.; Dartois, E.; Encrenaz, P.; Falgarone, E.; Geballe, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Ka<c5><ba>mierczak, M.; Kołos, R.; Krełowski, J.; Lis, D. C.; Martin-Pintado, J.; Menten, K. M.; Monje, R.; Pearson, J. C.; Perault, M.; Phillips, T. G.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Teyssier, D.; Vastel, C.; Yu, S.; Dieleman, P.; Güsten, R.; Honingh, C. E.; Morris, P.; Roelfsema, P.; Schieder, R.; Tielens, A. G. G. M.; Zmuidzinas, J. doi  openurl
  Title Excitation and abundance of C3 in star forming cores. Herschel/HIFI observations of the sight-lines to W31C and W49N Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L13  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: lines and bands / ISM: molecules / radiative transfer / ISM: individual objects: W49N / ISM: individual objects: W31C  
  Abstract We present spectrally resolved observations of triatomic carbon (C3) in several ro-vibrational transitions between the vibrational ground state and the low-energy ν2 bending mode at frequencies between 1654–1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (Trot) of ~50-70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived Trot, we get column densities N(C3) ~ 7–9 × 1014 cm-2 and abundance x(C3) ~ 10-8 with respect to H2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C3) = 10-8, Tkin = 30–50 K, N(C3) = 1.5 × 1015 cm-2 fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1099  
Permanent link to this record
 

 
Author Nebosis, R. S.; Semenov, A. D.; Gousev, Yu. P.; Renk, K. F. openurl 
  Title Rigorous analysis of a superconducting hot-electron bolometer mixer: theory and comparision with experiment Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 601-613  
  Keywords HEB mixer, model, conversion gain, noise temperature, impedance, 2.5 THz  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, Virginia, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 605  
Permanent link to this record
 

 
Author Okunev, 0.; Dzardranov, A.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title Performances of hot—electron superconducting mixer for frequencies less than the gap energy: NbN mixer for 100 GHz operation Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 247-253  
  Keywords NbN HEB mixers  
  Abstract The possibilities to improve the parameters of the 100 GHz NbN HEB superconducting waveguide mixers have been studied. The device consists of a signal strip 1 gm wide by 2 Am long made of 40 A thick NbN film. The best operation point was found at 5 K, where the mixer bandwidth made up 1.5-2 GHz and the total loss diminished down to 8 dB. The critical current density has been increased up to " 40 6 A/cm 2 , the noise temperature of the receiver (DSB) has reduced down to 450 K and the local oscillator power has decreased down to -.4).1 mcV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1625  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting hot-electron bolometer mixer as element of thermal imager matrix Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 36 Issue 11 Pages 1006-1008  
  Keywords HEB mixers  
  Abstract The possibility of using a matrix of sensitive elements on a 12-mm-diameter hyperhemispherical lens in a thermal imager operating in the terahertz range has been studied. Dimensions of a lens region acceptable for arrangement of the matrix, in which the receiver noise temperature varies within 16% of the mean value, are determined to be 3.3% of the lens diameter. Deviations of the main lobe of the directivity pattern are evaluated, which amount to ±1.25° relative to the direction toward the optimum position of a mixer. The fluctuation sensitivity of the receiver measured in experiment is 0.5 K at a frequency of 300 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1390  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N. url  isbn
openurl 
  Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
  Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume Issue Pages 867  
  Keywords HEB  
  Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.  
  Address Moscow, Russia  
  Corporate Author Thesis  
  Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022  
Permanent link to this record
 

 
Author Palma, F.; Teppe, F.; Fatimy, A. E.; Green, R.; Xu, J.; Vachontin, Y.; Tredicucci, A.; Goltsman, G.; Knap, W. url  doi
openurl 
  Title THz communication system based on a THz quantum cascade laser and a hot electron bolometer Type Conference Article
  Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves  
  Volume Issue Pages 11623798 (1 to 2)  
  Keywords QCL, HEB detector  
  Abstract We present the experimental study of the direct emission – detection system based on the THz Quantum Cascade Laser as a source and Hot Electron Bolometer (HEB) detector – in view of its application as an optical communication system. We show that the system can efficiently transmit the QCL Terahertz pulses. We estimate the maximal modulation speed of the system to be about several GHz and show that it is limited only by the QCL pulse power supply, detector amplifier and connection line/wires parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1391  
Permanent link to this record
 

 
Author Pekker, David; Shah, Nayana; Sahu, Mitrabhanu; Bezryadin, Alexey; Goldbart, Paul M. doi  openurl
  Title Stochastic dynamics of phase-slip trains and superconductive-resistive switching in current-biased nanowires Type Journal Article
  Year 2009 Publication Phys. Rev. B Abbreviated Journal  
  Volume 80 Issue Pages 214525 (1 to 17)  
  Keywords superconducting nanowire, phase-slip, order parameter, HEB distributed model, HEB model  
  Abstract Superconducting nanowires fabricated via carbon-nanotube templating can be used to realize and study quasi-one-dimensional superconductors. However, measurement of the linear resistance of these nanowires have been inconclusive in determining the low-temperature behavior of phase-slip fluctuations, both quantal and thermal. Thus, we are motivated to study the nonlinear current-voltage characteristics in current-biased nanowires and the stochastic dynamics of superconductive-resistive switching, as a way of probing phase-slip events. In particular, we address the question: can a single phase-slip event occurring somewhere along the wire—during which the order-parameter fluctuates to zero—induce switching, via the local heating it causes? We explore this and related issues by constructing a stochastic model for the time evolution of the temperature in a nanowire whose ends are maintained at a fixed temperature. We derive the corresponding master equation as a tool for evaluating and analyzing the mean switching time at a given value of current (smaller than the depairing critical current). The model indicates that although, in general, several phase-slip events are necessary to induce switching via a thermal runaway, there is indeed a regime of temperatures and currents in which a single event is sufficient. We carry out a detailed comparison of the results of the model with experimental measurements of the distribution of switching currents, and provide an explanation for the rather counterintuitive broadening of the distribution width that is observed upon lowering the temperature. Moreover, we identify a regime in which the experiments are probing individual phase-slip events, and thus offer a way of unearthing and exploring the physics of nanoscale quantum tunneling of the one-dimensional collective quantum field associated with the superconducting order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 923  
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K. url  doi
openurl 
  Title Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
  Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 10 Issue 1 Pages 16819  
  Keywords VN HEB  
  Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.  
  Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33033360; PMCID:PMC7546726 Approved no  
  Call Number Serial 1797  
Permanent link to this record
 

 
Author Pentin, Ivan; Finkel, Matvey; Maslennikov, Sergey; Vakhtomin, Yuri; Smirnov, Konstantin; Kaurova, Nataliya; Goltsman, Gregory url  openurl
  Title Superconducting hot-electron-bolometer mixers for the mid-IR Type Journal Article
  Year 2017 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords IR NbN HEB mixers  
  Abstract The work presents the result of development of the NbN superconducting hot-electron-bolometer (HEB) mixer. The sensitive element of the mixer is directly coupled to mid-IR radiation, and doesn’t have planar metallic antenna. Investigations of noise characteristics of NbN HEB mixer were performed at the frequency 28.4 THz (λ = 10.6 µm) by using gas-discharge CW CO2-laser without consideration of optical and electrical losses in the heterodyne receiver. The noise temperature of NbN HEB mixer with the size of the sensitive element 10 µm × 10 µm was 2320 K (~ 1.5hν/kB) at the heterodyne frequency of 28.4 THz. The noise temperature was determined by measuring the Y-factor taking into account the term which describes fluctuations of zero-point oscillations in accordance with the fluctuation-dissipation theorem of Calle-Welton. Isothermal method was used to estimate the absorbed heterodyne radiation power which was 9 µW at the optimal operating point for the minimum noise temperature of NbN HEB mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1684-1719 ISBN Medium  
  Area Expedition Conference  
  Notes http://jre.cplire.ru/jre/oct17/9/abstract.html (Russian) Гетеродинный приемник со сверхпроводниковым смесителем на эффекте электронного разогрева для среднего инфракрасного диапазона Approved no  
  Call Number Serial 1747  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G. url  doi
openurl 
  Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
  Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz  
  Volume Issue Pages 1-2  
  Keywords NbN HEB mixer, superlattice  
  Abstract We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 6105209 Serial 1384  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S. url  doi
openurl 
  Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
  Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.  
  Volume 57 Issue 7 Pages 971-974  
  Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers  
  Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7842 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1378  
Permanent link to this record
 

 
Author Phillips, T. G.; Jefferts, K. B. doi  openurl
  Title A low temperature bolometer heterodyne receiver for Millimeter wave astronomy Type Journal Article
  Year 1973 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 44 Issue 8 Pages 1009-1014  
  Keywords InSb HEB mixer  
  Abstract Liquid helium cooled InSb hot electronbolometers are used in a balanced mixer configuration as detectors for an imagelessmicrowave receiver. The system is designed for mounting at the prime focus of the National Radio Astronomy Observatory (NRAO) 11 m antenna at Kitt Peak, Arizona, and is suitable for the study of rotational line spectra of interstellar gas molecules. Currently the operating frequency is in the 90–140 GHz band where the double sideband system noise temperature is 250 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 927  
Permanent link to this record
 

 
Author Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F. doi  openurl
  Title A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components Type Journal Article
  Year 2013 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 554 Issue Pages A103  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: general / stars: formation / evolution / ISM: clouds / ISM: structure / submillimeter: ISM  
  Abstract Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions.

Aims. Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM.

Methods. The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane.

Results. [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4–11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4–8 kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ~20% at 4 kpc to ~80% at 10 kpc. On average, CO-dark H2 accounts for ~30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 â‰<192> 1 – 30.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1100  
Permanent link to this record
 

 
Author Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W. doi  openurl
  Title A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L19  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: structure / photon-dominated region / ISM: supernova remnants / evolution  
  Abstract The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1–10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104–106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1101  
Permanent link to this record
 

 
Author Prober, D. E. openurl 
  Title Superconducting terahertz mixer using a transition-edge microbolometer Type Journal Article
  Year 1993 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 62 Issue 17 Pages 2119-2121  
  Keywords HEB mixer, NbN, TES  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 244  
Permanent link to this record
 

 
Author Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J. openurl 
  Title Terahertz hot electron bolometer waveguide mixers for GREAT Type Journal Article
  Year 2012 Publication Astron. Astrophys. Abbreviated Journal A&A  
  Volume 542 Issue Pages L2  
  Keywords HEB mixer, applications  
  Abstract Context. Supplementing the publications based on the first-light observations with the German REceiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. This Letter complements the GREAT instrument Letter and focuses on the mixers itself.

Aims. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given.

Methods. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss.

Results. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 907  
Permanent link to this record
 

 
Author Rabanus, D.; Graf, U. U.; Philipp, M.; Ricken, O.; Stutzki, J.; Vowinkel, B.; Wiedner, M. C.; Walther, C.; Fischer, M.; Faist, J. openurl 
  Title Phase locking of a 1.5 terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver Type Journal Article
  Year 2009 Publication Optics Express Abbreviated Journal  
  Volume 17 Issue 3 Pages 1159-1168  
  Keywords QCL heterodyne, 300 uW at 1.5 THz, HEB mixer  
  Abstract We demonstrate for the first time the closure of an electronic phase lock loop for a continuous–wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark–shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 628  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Goltsman, G. N. url  doi
openurl 
  Title Terahertz emission from a weakly-coupled GaAs/AlGaAs superlattice biased into three different modes of current self-oscillations Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances  
  Volume 9 Issue 10 Pages 105220  
  Keywords GaAs/AlGaAs superlattice, SL, NbN HEB  
  Abstract Radio-frequency modulated terahertz (THz) emission power from weakly-coupled GaAs/AlGaAs superlattice (SL) has been increased by parallel connection of several SL mesas. Each SL mesa is a self-oscillator with its own oscillation frequency and mode. In coupled non-identical SL mesas biased at different voltages within the hysteresis loop the chaotic, quasiperiodic and frequency-locked modes of self-oscillations of current arise. THz emission was detected when three connected in parallel SL mesas were biased into the frequency-locked and quasiperiodic modes of self-oscillations of current, while in the chaotic mode of those it falls to the noise level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1274  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N. url  doi
openurl 
  Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
  Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 128 Issue 22 Pages 224303 (1 to 11)  
  Keywords HEB, resonant tunneling diode, RTD  
  Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1262  
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K. url  doi
openurl 
  Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances  
  Volume 9 Issue 7 Pages 075307  
  Keywords NbN HEB mixers, QCL, IR  
  Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1293  
Permanent link to this record
 

 
Author Richter, H.; Semenov, A.; Hubers, H.-W.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  doi
openurl 
  Title Phonon cooled hot-electron bolometric mixer for 1-5 THz Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 241-242  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently built for SOFIA and Herschel, superconducting hot electron bolometers (HEB) are used to achieve this goal at frequencies above 1.4 THz. In order to optimize the performance for this frequency of hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0/spl times/0.2 /spl mu/m/sup 2/ incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1506  
Permanent link to this record
 

 
Author Risacher, C.; Meledin, D.; Belitsky, V.; Bergman, P. openurl 
  Title First 1.3 THz observations at the APEX telescope Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 54-61  
  Keywords balanced HEB mixer noise temperature APEX telescope stability Allan variance aperture efficiency  
  Abstract The Atacama Pathfinder EXperiment (APEX) 12m telescope is operating on the Llano Chajnantor, Chile, since 2003 and a set of state of the art sub-millimeter receivers have been installed for frequencies spanning from 150 GHz to 1500 GHz. In 2008, a balanced 1.3 THz Hot Electron Bolometer (HEB) receiver was installed for the atmospheric window 1250-1380 GHz. This instrument is part of a 4-channel receiver cryostat with the other channels being 211-275 GHz, 275-370 GHz and 380-500 GHz Sideband Separating (SSB) SIS receivers. This paper presents the first observations obtained so far with the 1.3 THz band during its first months of operation. The sky measurements were taken during opportunistic commissioning and science verification phases, when the weather conditions were sufficiently good with a Precipitable Water Vapor (PWV) below 0.25 mm, which was the case only a few nights during these months. We present the first observations of the molecular transition CO J=(11-10) line on different sources such as Orion-FIR4, CW-Leo and SgrB2(M). We describe the many challenges and difficulties encountered for achieving successful THz observations from a large sub-millimeter ground-based telescope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 619  
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N. url  doi
openurl 
  Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages 853-855  
  Keywords YBCO HTS HEB mixers  
  Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1563  
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G. url  doi
openurl 
  Title Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 391-394  
  Keywords NbN HEB mixers  
  Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1427  
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G. url  doi
openurl 
  Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6373 Issue Pages 63730J (1 to 5)  
  Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations  
  Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Physics, Devices, and Systems  
  Notes Approved no  
  Call Number Serial 1441  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory url  doi
openurl 
  Title Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 1 Pages 14-19  
  Keywords HEB, mixer, Allan variance, stabilization, radiometer equation  
  Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 559  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-yu Edward; Blundell, Raymond; Kimberk, Robert; Gol’tsman, Gregory url  openurl
  Title Stabilisation of a terahertz hot-electron bolometer mixer with microwave feedback control Type Conference Article
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 193-198  
  Keywords waveguide NbN HEB mixers, Allan variance, stability  
  Abstract We report on implementation of microwave feedback control loop to stabilise the performance of an HEB mixer receiver. It is shown that the receiver sensitivity increases by a factor of 4 over a 16-minute scan, and the corresponding Allan time increases up to 10 seconds, as opposed to an open loop value of 1 second. Our experiments also demonstrate that the receiver sensitivity is limited by the intermediate frequency chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1421  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory doi  openurl
  Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 3 Pages 293-296  
  Keywords HEB mixer  
  Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 636  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. doi  openurl
  Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
  Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 52 Issue 8 Pages 576-582  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 599  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title Fabrication and characterisation of NbN HEB mixers with in situ gold contacts Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 62-67  
  Keywords HEB, mixer, NbN, in-situ contacts  
  Abstract We present our recent results of the fabrication and testing of NbN hot-electron bolometer mixers with in situ gold contacts. An intermediate frequency bandwidth of about 6 GHz has been measured for the mixers made of a 3.5-nm NbN film on a plane Si substrate with in situ gold contacts, compared to 3.5 GHz for devices made of the same film with ex situ gold contacts. The increase in the intermediate frequency bandwidth is attributed to additional diffusion cooling through the improved contacts, which is further supported by the its dependence on the bridge length: intermediate frequency bandwidths of 3.5 GHz and 6 GHz have been measured for devices with lengths of 0.35 μm and 0.16 μm respectively at a local oscillator frequency of 300 GHz near the superconducting transition. At a local oscillator frequency of 2.5 THz the receiver has offered a DSB noise temperature of 950 K. When compared to the previous result of 1300 K obtained at the same local oscillator frequency for devices fabricated with an ex situ route, such a low value of the noise temperature may also be attributed to the improved gold contacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 412  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages 151-154  
  Keywords HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 590  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E. doi  openurl
  Title Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal  
  Volume 12 Issue 11 Pages 748-750  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements of an NbN phonon-cooled hot-electron bolometric mixer in the terahertz frequency range. The devices were 3 nm thick films with in-plane dimensions 1.7 × 0.2 µm2 and 0.9 × 0.2 µm2 integrated in a complementary logarithmic-spiral antenna. Measurements were performed at seven frequencies ranging from 0.7 THz to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz) and 8800 K (5.2 THz).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 298  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E. url  openurl
  Title Noise temperature and sensitivity of a NbN hot-electron mixer at frequencies from 0.7 THz to 5.2 THz Type Conference Article
  Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 190-199  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements of a NbN phonon-cooled hot-electron bolometric mixer at different bias regimes. The device was a 3 nm thick bridge with in-plane dimensions of 1.7 x 0.2 gm 2 integrated in a complementary logarithmic spiral antenna. Measurements were performed at frequencies ranging from 0.7 THz up to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz) 5600 K (4.3 THz) and 8800 K (5.2 THz). Two bias regimes are possible in order to achieve low noise temperatures. But only one of them yields sensitivity fluctuations close to the theoretical limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1573  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Hübers, H.-W.; Gol'tsman, G.; Schwaab, G.; Voronov, B.; Gershenzon, E. url  openurl
  Title Broad-band terahertz NbN hot-electron bolometric mixer Type Conference Article
  Year 1999 Publication Inst. Phys. Conf. Abbreviated Journal Inst. Phys. Conf.  
  Volume 167 Issue Pages 663-666  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 4th Europ. Conf. on Appl. Superconductivity, Barcelona, Spain, 14-17 September 1999  
  Notes Approved no  
  Call Number Serial 1578  
Permanent link to this record
 

 
Author Schwaab, G.W.; Auen, K.; Bruendermann, E.; Feinaeugle, R.; Gol’tsman, G.N.; Huebers, H.-W.; Krabbe, A.; Roeser, H.-P.; Sirmain, G. url  doi
openurl 
  Title 2- to 6-THz heterodyne receiver array for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Type Conference Article
  Year 1998 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3357 Issue Pages 85-96  
  Keywords NbN HEB mixers, applications, stratospheric observatory, airborne  
  Abstract The Institute of Space Sensor Technology of the German Aerospace Center (DLR) is developing a heterodyne array receiver for the frequency range 2 to 6 THz for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Key science issues in that frequency range are the observation of lines of atoms [e.g. (OI)], ions [e.g. (CII), (NII)], and molecules (e.g. OH, HD, CO) with high spectral resolution to study the dynamics and evolution of galactic and extragalactic objects. Long term goal is the development of an integrated array heterodyne receiver with superconducting hot electron bolometric (HEB) mixers and p-type Ge or Si lasers as local oscillators. The first generation receiver will be composed of HEB mixers in a 2 pixel 2 polarization array which will be pumped by a gas laser local oscillator. Improved Schottky diode mixers are the backup solution for the HEBs. The state of the art of HEB mixer and p-type Ge laser technology are described as well as possible improvements in the ’conventional’ optically pumped far-infrared laser and Schottky diode mixer technology. Finally, the frequency coverage of the first generation heterodyne receiver for some important astronomical transitions is discussed. The expected sensitivity is compared to line fluxes measured by the ISO satellite.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Advanced Technology MMW, Radio, and Terahertz Telescopes  
  Notes Approved no  
  Call Number Serial 1583  
Permanent link to this record
 

 
Author Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4233-4236  
  Keywords NbN HEB mixers  
  Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 550  
Permanent link to this record
 

 
Author Seliverstov, S.; Maslennikov, S.; Ryabchun, S.; Finkel, M.; Klapwijk, T. M.; Kaurova, N.; Vachtomin, Yu.; Smirnov, K.; Voronov, B.; Goltsman, G. doi  openurl
  Title Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300304  
  Keywords HEB detector responsivity, HEB model, numerical calculations, numerical model  
  Abstract We characterize superconducting antenna-coupled hot-electron bolometers for direct detection of terahertz radiation operating at a temperature of 9.0 K. The estimated value of responsivity obtained from lumped-element theory is strongly different from the measured one. A numerical calculation of the detector responsivity is developed, using the Euler method, applied to the system of heat balance equations written in recurrent form. This distributed element model takes into account the effect of nonuniform heating of the detector along its length and provides results that are in better agreement with the experiment. At a signal frequency of 2.5 THz, the measured value of the optical detector noise equivalent power is 2.0 × 10-13 W · Hz-0.5. The value of the bolometer time constant is 35 ps. The corresponding energy resolution is about 3 aJ. This detector has a sensitivity similar to that of the state-of-the-art sub-millimeter detectors operating at accessible cryogenic temperatures, but with a response time several orders of magnitude shorter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 953  
Permanent link to this record
 

 
Author Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P. url  doi
openurl 
  Title Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser Type Journal Article
  Year 2017 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 60 Issue 7 Pages 518-524  
  Keywords NbN HEB mixer, QCL  
  Abstract We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1322  
Permanent link to this record
 

 
Author Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Attojoule energy resolution of direct detector based on hot electron bolometer Type Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012165 (1 to 5)  
  Keywords NbN HEB detector  
  Abstract We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Seliverstov_2016 Serial 1337  
Permanent link to this record
 

 
Author Seliverstov, Sergey V.; Rusova, Anastasia A.; Kaurova, Natalya S.; Voronov, Boris M.; Goltsman, Gregory N. openurl 
  Title AC-biased superconducting NbN hot-electron bolometer for frequency-domain multiplexing Type Conference Article
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 120-122  
  Keywords NbN HEB mixer  
  Abstract We present the results of characterization of fast and sensitive superconducting antenna-coupled THz direct detector based on NbN hot-electron bolometer (HEB) with AC-bias. We discuss the possibility of implementation of the AC-bias for design the readout system from the multi-element arrays of HEBs using standard technique of frequency-domain multiplexing. We demonstrate experimentally that this approach does not lead to significant deterioration of the HEB sensitivity compared with the value obtained for the same detector with DC- bias. Results of a numerical calculations of the HEB responsivity at AC-bias are in a good agreement with the experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1174  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Petrenko, D.; Tretyakov, I.; Ryabchun, S.; Finkel, M.; Kaurova, N.; Gol’tsman, G.; Risacher, C.; Ricken, O.; Güsten, R. url  openurl
  Title Optimization of the intermediate frequency bandwidth in the THz HEB mixers Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 54  
  Keywords NbN HEB mixer  
  Abstract We report on the studies of the intermediate frequency (IF) bandwidth of quasi-optically coupled NbN hot-electron bolometer (HEB) mixers which are aimed at the optimization of the mixer performance at terahertz frequencies. Extension of the IF bandwidth due to the contribution of electron diffusion to the heat removal from NbN microbolometers has been already demonstrated for NbN HEBs at subterahertz frequencies. However, reducing the size of the microbolometer causes degradation of the noise temperature. Using in-situ multilayer manufacturing process we succeeded to improve the transparency of the contacts for electrons which go away from microbolometer to the metallic antenna. The improved transparency and hence coupling efficiency counterbalances the noise temperature degradation. HEB mixers were tested in a laboratory heterodyne receiver with a narrow-band cold filter which allowed us to eliminate direct detection. We used a local oscillator with a quantum cascade laser (QCL) at a frequency of 4.745 THz [1] which was developed for the H-Channel of the German Receiver for Astronomy at Terahertz frequencies (GREAT). Both the noise and gain bandwidth were measured in the IF range from 0.5 to 8 GHz using the hot-cold technique and preliminary calibrated IF analyzer with a tunable microwave filter. For optimized HEB geometry we found the noise bandwidth as large as 7 GHz. We compare our results with the conventional and the hot-spot mixer models and show that further extension of the IF bandwidth should be possible via improving the sharpness of the superconducting transition. The cross characterization of the HEB mixer was performed in the test bed of GREAT at the Max-Planck-Institut für Radioastronomie with the same QCL LO and delivered results which were consistent with the laboratory studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1359  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G. url  isbn
openurl 
  Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
  Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal Proc. 6th European Conf. Appl. Supercond.  
  Volume 181 Issue Pages 2960-2965  
  Keywords NbN HEB mixers  
  Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.  
  Address Sorrento, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0750309814, 978-0750309813 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1505  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Smirnov, A.; Günther, B.; Hübers, H.-W.; Il’in, K.; Siegel, M.; Gol’tsman, G.; Drakinskiy, V.; Merkel, H.; Karamarkovic, J. url  openurl
  Title Development of HEB mixers for GREAT and for security screening Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 184  
  Keywords NbN HEB mixers, GREAT  
  Abstract We report the study on the quasioptical coupling efficiency and the gain bandwidth of NbN hot-electron bolometer mixers developed for the 4.7 THz channel of the German receiver for Astronomy at THz-frequencies (GREAT) and for security screening at subterahertz frequencies. Radiation coupling efficiency and directive properties of integrated lens antennas with log-spiral, log-periodic and double-slot planar feeds coupled to a hot-electron bolometer were experimentally studied at frequencies from 1 THz to 6 THz and compared with simulations based on the method of moments and the physical-optics ray tracing. For all studied antennas the modeled spectral dependence of the coupling efficiency fits to the experimental data obtained with both Fourier transform spectroscopy and noise temperature measurements only if the complex impedance of the bolometer is explicitly taken into account. Our experimental data did not indicate any noticeable contribution of the quantum noise to the system noise temperature. The experimentally observed deviation of the beam pattern from the model prediction increases with frequency and is most likely due to a non- ideality of the presently used lenses. Study of the intermediate frequency mixer gain at local oscillator (LO) frequencies between 2.5 THz and 0.3 THz showed an increase of the gain bandwidth at low LO frequencies that was understood as the contribution of the direct interaction of magnetic vortices with the radiation field. We have found that the non- homogeneous hot-spot model more adequately describes variation of the intermediate frequency bandwidth with the applied local oscillator power than any of uniform mixer models. The state-of-the-day performance of the GREAT 4.7-THz channel and the 0.8-THz security scanner will be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1420  
Permanent link to this record
 

 
Author Semenov, Alexei; Il'yin, Konstantin; Siegel, Michael; Smirnov, Andrey; Pavlov, Sergey; Richter, Heiko; Hübers, Heinz-Wilhelm openurl 
  Title Intermediate frequency bandwidth of a hot-electron mixer: Comparision with bolometric models Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 73-76  
  Keywords HEB  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 537  
Permanent link to this record
 

 
Author Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Hübers, Heinz-Wilhelm doi  openurl
  Title The development of terahertz superconducting hot-electron bolometric mixers Type Journal Article
  Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 17 Issue 5 Pages 436-439  
  Keywords NbN HEB mixers  
  Abstract We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 357  
Permanent link to this record
 

 
Author Semenov, A. D.; Il'in, K.; Siegel, M.; Smirnov, A.; Pavlov, S.; Richter, H.; Hübers, H.-W. url  doi
openurl 
  Title Evidence of non-bolometric mixing in the bandwidth of a hot-electron bolometer Type Journal Article
  Year 2006 Publication Superconductor Science and Technology Abbreviated Journal Supercond. Sci. Technol.  
  Volume 19 Issue 10 Pages 1051-1056  
  Keywords HEB  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 536  
Permanent link to this record
 

 
Author Semenov, A. D.; Nebosis, R. S.; Gousev, Yu. P.; Heusinger, M. A.; Renk, K. F. openurl 
  Title Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model Type Journal Article
  Year 1995 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 52 Issue 1 Pages 581-590  
  Keywords HEB, NbN phonon scecific heat, Cp  
  Abstract Photoresponse of a superconducting film in the resistive state to pulsed radiation has been studied in the framework of a model assuming that two different effective temperatures can be assigned to the quasiparticle and phonon nonequilibrium distributions. The coupled electron-phonon-substrate system is described by a system of time-dependent energy-balance differential equations for effective temperatures. An analytical solution of the system is given and calculated voltage transients are compared with experimental photoresponse signals taking into account the radiation pulse shape and the time resolution of the readout electronics. It is supposed that a resistive state (vortices, fluxons, network of intergrain junctions, hot spots, phase slip centers) provides an ultrafast connection between electron temperature changes and changes of the film resistance and thus plays a minor role in the temporal evolution of the response. In accordance with experimental observations a two-component response was revealed from simulations. The slower component corresponds to a bolometric mechanism while the fast component is connected with the relaxation of the electron temperature. Calculated photoresponse transients are presented for different ratios of the electron and phonon specific heat, radiation pulse durations and fluences, and frequency band passes of registration electronics. From the amplitude of the bolometric component we determine the radiation energy absorbed in a film. This enables us to reveal an intrinsic electron-phonon scattering time even if it is much shorter than the time resolution of readout electronics. We analyze experimental voltage transients for NbN, YBa2Cu3O7, and TlBa2Ca2Cu3O9 superconducting films and find the electron-phonon interaction times at the transition temperatures of 17, 2.5, and 1.8 ps, respectively. The values are in reasonable agreement with data of other experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 903  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol'tsman, G. N. url  doi
openurl 
  Title Non-thermal response of a diffusion-cooled hot-electron bolometer Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4491-4494  
  Keywords HEB mixers, non-thermal  
  Abstract We present an analysis of a diffusion-cooled hot-electron bolometer in the limiting case of a weak thermalization of non-equilibrium quasiparticles. We propose a new model relying on the non-thermal suppression of the superconducting energy gap by excess quasiparticles. Using material parameters typical for Al, we evaluate performance of the bolometer in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have quantum limited noise temperature and a few tens of GHz bandwidth, while the required local oscillator power is in the /spl mu/W range due to in-effective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1567  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N. url  doi
openurl 
  Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 87 Issue 1 Pages 502-510  
  Keywords NbN HEB mixers, nonthermal  
  Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1558  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages 6758-6767  
  Keywords HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 306  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 39-48  
  Keywords NbN HEB mixers  
  Abstract We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 305  
Permanent link to this record
 

 
Author Semenov, A. D.; Goghidze, I. G.; Gol’tsman, G. N.; Sergeev, A. V.; Aksaev, E. E.; Gershenzon, E. M. url  doi
openurl 
  Title Non-equilibrium quasiparticle response to radiation and bolometric effect in YBaCuO films Type Journal Article
  Year 1993 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 3 Issue 1 Pages 2132-2135  
  Keywords YBCO HTS HEB detectors  
  Abstract The voltage photoresponse of structured current biased YBCO films on different substrates to 20-ps laser pulses of 0.63- mu m and 1.54- mu m wavelengths and to continuously modulated radiation of 2-mm wavelength is measured to temperatures around Tc. Fast picosecond decay of the response to pulsed radiation is followed by slow exponential relaxation with a nanosecond characteristic time depending on the substrate material and film dimensions. The slow component does not depend on wavelength and is attributed to the bolometric effect, while the magnitude of the fast component associated with nonequilibrium response rises with wavelength. More than an order-of-magnitude increase of the nonequilibrium response is seen from near-infrared to millimeter-wave range. This dependence plausibly reflects the low efficiency of multiplication of photoexcited electrons in YBaCuO compared to conventional superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1659  
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Nebosis, R. S.; Renk, K. F.; Yagoubov, P.; Voronov, B. M.; Gol’tsman, G. N.; Syomash, V. D.; Gershenzon, E. M. url  doi
openurl 
  Title Heterodyne detection of THz radiation with a superconducting hot‐electron bolometer mixer Type Journal Article
  Year 1996 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 69 Issue 2 Pages 260-262  
  Keywords NbN HEB mixers  
  Abstract We report on the use of a superconducting hot‐electron bolometer mixer for heterodyne detection of terahertz radiation. Radiation with a wavelength of 119 μm was coupled to the mixer, a NbN microbridge, by a hybrid quasioptical antenna consisting of an extended hyperhemispherical lens and a planar logarithmic spiral antenna. We found, at an intermediate frequency of 1.5 GHz, a system double side band noise temperature of ≊40 000 K and conversion losses of 25 dB. We also discuss the possibilities of further improvement of the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1610  
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Renk, K. F.; Voronov, B. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Schwaab, G.W.; Feinaugle, R. url  doi
openurl 
  Title Noise characteristics of a NbN hot-electron mixer at 2.5 THz Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3572-3575  
  Keywords NbN HEB mixers  
  Abstract The noise temperature of a NbN phonon cooled hot-electron mixer has been measured at a frequency of 2.5 THz for various operating conditions. We obtained for optimal operation a double sideband mixer noise temperature of /spl ap/14000 K and a system conversion loss of /spl ap/23 dB at intermediate frequencies up to 1 GHz. The dependences of the mixer noise temperature on the bias voltage, local oscillator power, and intermediate frequency were consistent with the phenomenological description based on the effective temperature approximation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1594  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M. url  doi
openurl 
  Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 372-376 Issue Pages 448-453  
  Keywords NbN HEB mixers, applications  
  Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1526  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, Heinz-Wilhelm; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Vachtomin, Yu. B.; Finkel, M. I.; Antipov, S. V.; Voronov, B. M.; Smirnov, K. V.; Kaurova, N. S.; Drakinski, V. N.; Gol'tsman, G. N. doi  openurl
  Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages 168-171  
  Keywords NbN HEB mixers  
  Abstract We present recent results showing the development of superconducting NbN hot-electron bolometer mixer for German receiver for astronomy at terahertz frequencies and terahertz limb sounder. The mixer is incorporated into a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and backed on a silicon lens. The hybrid antenna had almost frequency independent and symmetric radiation pattern slightly broader than expected for a diffraction limited antenna. At 2.5 THz the best 2200 K double side-band receiver noise temperature was achieved across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. For this operation regime, a receiver conversion efficiency of -17 dB was directly measured and the loss budget was evaluated. The mixer response was linear at load temperatures smaller than 400 K. Implementation of the MgO buffer layer on Si resulted in an increased 5.2 GHz gain bandwidth. The receiver was tested in the laboratory environment by measuring a methanol emission line at 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 343  
Permanent link to this record
 

 
Author Semenov, Alexei D.; Hiibers, Heinz-Wilhelm; Richter, Heiko; Smirnov, Konstantin; Gol'tsman, Gregory N.; Kaurova, Natalia; Voronov, Boris M. url  openurl
  Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 33-40  
  Keywords NbN HEB mixers  
  Abstract A number of on-going astronomical and atmospheric research programs are aimed to the Terahertz (THz) spectral region. At frequencies above about 1.4 THz heterodyne receivers planned for these missions will use superconducting hot-electron bolometers as a mixers. We present recent results of the terahertz antenna development of superconducting NbN hot-electron bolometer mixer for GREAT (German Receiver for Astronomy at Terahertz Frequencies, to be used aboard of SOFIA) and TELIS (Terahertz Limb Sounder). The mixer is incorporated into hybrid antenna consisting of a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and hyper hemispherical silicon lens. The hybrid antenna showed almost frequency independent and symmetric radiation pattern with the beam-width slightly broader than expected for diffraction limited antenna. The noise temperature as well as its spectral dependence changes with the bolometer sizes that provides additional tool for mixer optimization. FTS spectra measured in the direct detection regime agreed with the noise temperature spectra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1498  
Permanent link to this record
 

 
Author Semenov, Alexei D.; Hübers, Heinz-Wilhelm; Richter, Heiko; Smirnov, Konstantin; Gol'tsman, Gregory N.; Voronov, Boris M. url  openurl
  Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Abstract
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 164  
  Keywords NbN HEB mixers  
  Abstract A number of on-going astronomical and atmospheric research programs are aimed to the Terahertz (THz) spectral region. At frequencies above about 1.4 THz heterodyne receivers planned for these missions will use superconducting hot-electron bolometers as a mixers. We present current results on the development of superconducting NbN hot- electron bolometer mixer and quasioptical radiation coupling scheme for GREAT (German Receiver for Astronomy at Terahertz Frequencies, to be used aboard of SOFIA) and TELIS (Terahertz Limb Sounder). The mixer is incorporated into hybrid antenna consisting of a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and hyperhemispherical silicon lens. For the log-spiral feed antenna, the double side-band receiver noise temperature of 5500 K was achieved at 4.3 THz. The noise temperature shows less than 3 dB increase in the intermediate frequency band from 4 GHz to 7 GHz. The hybrid antenna had almost frequency independent and symmetric radiation pattern with the beam-width slightly broader than expected for a diffraction limited pattern. Results of FTS measurements in the direct detection regime agreed with the spectral dependence of the noise temperature for spiral antennas with different spacing of inner terminals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1492  
Permanent link to this record
 

 
Author Semenov, Alexei D; Gol'tsman, Gregory N; Sobolewski, Roman url  doi
openurl 
  Title Hot-electron effect in superconductors and its applications for radiation sensors Type Journal Article
  Year 2002 Publication Superconductor Science and Technology Abbreviated Journal Supercond. Sci. Technol.  
  Volume 15 Issue 4 Pages R1-R16  
  Keywords HEB, SSPD  
  Abstract The paper reviews the main aspects of nonequilibrium hot-electron phenomena in superconductors and various theoretical models developed to describe the hot-electron effect. We discuss implementation of the hot-electron avalanche mechanism in superconducting radiation sensors and present the most successful practical devices, such as terahertz mixers and direct intensity detectors, for far-infrared radiation. Our presentation also includes the novel approach to hot-electron quantum detection implemented in superconducting x-ray to optical photon counters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 416  
Permanent link to this record
 

 
Author Semenov, Alexei D.; Richter, Heiko; Hubers, Heinz-Wilhelm; Gunther, Burghardt.; Smirnov, Andrey; Il'in, Konstantin S.; Siegel, Michael; Karamarkovic, Jugoslav P. url  doi
openurl 
  Title Terahertz performance of integrated lens antennas with a hot-electron bolometer Type Journal Article
  Year 2007 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 55 Issue 2 Pages 239-247  
  Keywords HEB, lens antenna  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 538  
Permanent link to this record
 

 
Author Shcherbatenko, Michael; Lobanov, Yury; Benderov, Oleg; Shurakov, Alexander; Ignatov, Anton; Titova, Nadezhda; Finkel, Matvey; Maslennikov, Sergey; Kaurova, Natalya; Voronov, Boris M.; Rodin, Alexander; Klapwijk, Teunis M.; Gol'tsman, Gregory N. url  openurl
  Title Antenna-coupled 30 THz hot electron bolometer mixers Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 27  
  Keywords HEB mixer, IR, mid-IR, 30 THz, antenna-coupled  
  Abstract We report on design and characterization of a superconducting Hot Electron Bolometer Mixer integrated with a logarithmic spiral antenna for mid-IR range observations. The antenna parameters have been adjusted to achieve the ultimate performance at 10 µm (30 THz) range where O3, NH3, CO2, CH4, N2O,…. lines in the Earth’s atmosphere, in planetary atmospheres and in the interstellar space can be observed. The HEB mixer is made of a thin NbN film deposited onto a GaAs substrate. To couple the radiation we rely on the quasioptical approach: the device is glued to a semi-spherical germanium lens with diameter~ 3 mm. A wet cryostat equipped with a germanium window and narrow band-pass filter is used to characterize the antenna and estimate the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1157  
Permanent link to this record
 

 
Author Shcherbatenko, Michael; Lobanov, Yury; Finkel, Matvey; Maslennikov, Sergey; Pentin, Ivan; Semenov, Alexander; Titova, Nadezhda; Kaurova, Natalya; Voronov, Boris M.; Rodin, Alexander; Klapwijk, Teunis M.; Gol’tsman, Gregory N. url  openurl
  Title Development of a 30 THz heterodyne receiver based on a hot-electron-bolometer mixer Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 122  
  Keywords mid-IR NbN HEB mixers, GaAs substrates  
  Abstract We present new Hot-Electron-Bolometer (HEB) mixers designed for mid-IR spectroscopy targeting astrophysical and geophysical observations where high sensitivity and spectral resolution are required. The mixers are made of an ultrathin NbN film deposited on GaAs substrates. Two entirely different types of the devices have been fabricated. The first type is based on a direct radiation coupling concept and the mixing devices are shaped as squares of 5×5 μm 2 (which corresponds to the diffraction limit at the chosen wavelength) and 10×10 μm 2 (which was used to establish a possible influence of the contact pads on the radiation absorption). The second type utilizes a spiral antenna designed with HFSS. The fabrication and layout of the devices as well as the performance comparison will be presented. During the experiments, the HEB mixer was installed on the cold plate of a LHe cryostat. A germanium window and an extended semi-spherical germanium lens are used to couple the radiation. The cryostat is equipped with a germanium optical filter of thickness 0.5 mm and with a center wavelength of 10.6 mμ. The incident power absorption is measured by using the isothermal method. As a Local Oscillator, a 10.6 micrometers line of a CO2 gas laser is used. We further characterize the frequency response of the spiral antenna with a FIR-spectrometer. The noise characteristics of the mixers are determined from a room temperature cold load and a heated black body at ~600 K as a hot load.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1364  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. doi  openurl
  Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 109 Issue 13 Pages 132602  
  Keywords HEB mixer, contacts  
  Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1107  
Permanent link to this record
 

 
Author Shurakov, A.; Lobanov, Y.; Goltsman, G. url  doi
openurl 
  Title Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications Type Journal Article
  Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 29 Issue 2 Pages 023001  
  Keywords HEB  
  Abstract The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1156  
Permanent link to this record
 

 
Author Shurakov, A.; Seliverstov, S.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Input bandwidth of hot electron bolometer with spiral antenna Type Journal Article
  Year 2012 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 2 Issue 4 Pages 400-405  
  Keywords NbN HEB bolometers bandwidth, log-spiral antenna  
  Abstract We report the results of our study of the input bandwidth of hot electron bolometers (HEB) embedded into the planar log-spiral antenna. The sensitive element is made of the ultrathin superconducting NbN film patterned as a bridge at the feed of the antenna. The contacts between the antenna and a sensitive element are made from in situ deposited gold (i.e., deposited over NbN film without breaking vacuum), which gives high quality contacts and makes the response of the HEB at higher frequencies less affected by the RF loss. An accurate experimental spectroscopic procedure is demonstrated that leads to the confirmation of the wide ( 8 THz) bandwidth in this antenna coupled device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1161  
Permanent link to this record
 

 
Author Shurakov, A.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Microwave stabilization of a HEB mixer in a pulse-tube cryocooler Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 1501504-1501504  
  Keywords NbN HEB mixers  
  Abstract We report the results of our study of the stability of an 800 GHz hot electron bolometer (HEB) mixer cooled with a pulse-tube cryocooler. Pulse-tube cryocoolers introduce temperature fluctuations as well as mechanical vibrations at a frequency of ~1 Hz, both of which can cause receiver gain fluctuations at that frequency. In our system, the motor of the cryocooler was separated from the cryostat to minimize mechanical vibrations, leaving thermal effects as the dominant source of the receiver gain fluctuations. We measured root mean square temperature variations of the 4 K stage of ~7 mK. The HEB mixer was pumped by a solid state local oscillator at 810 GHz. The root mean square current fluctuations at the low noise operating point (1.50 mV, 56.5 μA) were ~0.12 μA, and were predominantly due to thermal fluctuations. To stabilize the bias current, microwave radiation was injected to the HEB mixer. The injected power level was set by a proportional-integral-derivative controller, which completely compensates for the bias current oscillations induced by the pulse-tube cryocooler. Significant improvement in the Allan variance of the receiver output power was obtained, and an Allan time of 5 s was measured.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1372  
Permanent link to this record
 

 
Author Shurakov, A.; Tong, Cheuk-yu E.; Grimes, P.; Blundell, R.; Golt'sman, G. openurl 
  Title A microwave reflection readout scheme for hot electron bolometric direct detector Type Journal Article
  Year 2015 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 5 Issue Pages 81-84  
  Keywords HEB detectors  
  Abstract In this paper, we propose and present data from a fast THz detector based on the repurpose of hot electron bolometer mixers (HEB) fabricated from superconducting NbN thinfilm. This detector is essentially a traditional NbN bolometer element that operates under the influence of a microwave pump. The in-jected microwave power serves the dual purpose of enhancing the detector sensitivity and reading out the impedance changes of the device in response to incidentTHz radiation. We have measured an optical Noise Equivalent Power of 4 pW/ Hz for our detector at a bath temperature of 4.2 K. The measurement frequency was 0.83 THz and the modulation frequency was 1.48 kHz. The readout

scheme is versatile and facilitates both high-speed operation as well as multi-pixel applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 950  
Permanent link to this record
 

 
Author Shurakov, Alexander; Maslennikov, Sergey; Tong, Cheuk-yu E.; Gol’tsman, Gregory url  openurl
  Title Performance of an HEB direct detector utilizing a microwave reflection readout scheme Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 36  
  Keywords HEB detector  
  Abstract We report the results of our study on the performance of a hot electron bolometric (HEB) direct detector, operated by a microwave pump. The HEB devices used in this work were made from NbN thin film deposited on high resistivity silicon with an in-situ fabrication process. The experimental setup employed is similar to the one described in [1]. The detector chips were glued to a silicon lens clamped to a copper holder mounted on the cold plate of a liquid helium cryostat. Thermal link between the lens and the holder was maintained by a thin indium shim. The HEBs were operated at a bath temperature of about 4.4 K. Conventional phonon pump, commonly realized by raising the bath temperature of the detector, was substituted by a microwave one. In this case, a CW microwave signal is injected to the device through a directional coupler connected directly to the detector holder. The power incident on the HEB device was typically 1-2 μW, and the pump frequency was in the range of 0.5-1.5 GHz. The signal sources were 2 black bodies held at temperatures of 295 K and 77 K. A chopper wheel placed in front of the cryostat window switched the input to the detector between the 2 sources. A modulation frequency of several kilohertz was chosen in order to reduce the effects of the HEB’s flicker noise. A cold mesh filter was used to define the input bandwidth of the detector. The reflected microwave signal from the HEB device was fed into a low noise amplifier, the output of which is connected to a room temperature Schottky microwave power detector. This Schottky detector, in conjunction with a lock-in amplifier, demodulated the input signal modulation from the copper wheel. As the input load was switched, the impedance of the HEB device at the microwave pump frequency also changed in response to the incident signal power variation. Therefore the reflected microwave power follows the incident signal modulation. The derived responsivity from this detection system nicely correlates with the HEB impedance. In order to provide a quantitative description of the impedance variation of the HEB device and the impact of a microwave pump, we have numerically solved the heat balance equations written for the NbN bridge and its surrounding thermal heat sink [2]. Our model also accounts for the impact of the operating frequency of the detector because of non-uniform absorption of low-frequency photons across the NbN bridge [3]. In our measurements we varied the signal source wavelength from 2 mm down to near infrared range, and hence we indirectly performed the impedance measurements at frequencies below, around and far beyond the superconducting gap. Preliminary results show good agreement between the experiment and theoretical prediction. Further measurements are still in progress. [1] A. Shurakov et al., “A Microwave Reflection Readout Scheme for Hot Electron Bolometric Direct Detector”, to appear in IEEE Trans. THz Sci. Tech., 2015. [2] S. Maslennikov, “RF heating efficiency of the terahertz superconducting hot-electron bolometer”, http://arxiv.org/pdf/1404.5276v5.pdf, 2014. [3] W. Miao et al., “Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges”, Appl. Phys. Let., 104, 052605, 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1158  
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Cheuk-yu E.; Blundell, Raymond; Gol’tsman, Gregory url  openurl
  Title A microwave pumped HEB direct detector using a homodyne readout scheme Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 129  
  Keywords waveguide NbN HEB detector, NEP  
  Abstract We report the results of our study on the noise performance of a fast THz detector based on the repurpose of hot electron bolometer mixer (HEB). Instead of operating with an elevated bath temperature, microwave power is injected into the HEB device, which enhances the sensitivity of the detector and at the same time provide a mechanism for reading out impedance changes of the device induced by the modulated incident THz radiation [1]. We have demonstrated an improvement of the detector’s optical noise equivalent power (NEP). Furthermore, by introducing a homodyne readout scheme based on a room temperature microwave mixer, the dynamic range of the detector is increased. The HEB devices used in this work were made of 4 nm thick NbN film. The detector chips were installed into a waveguide mixer block fitted with a corrugated horn, mounted on the cold plate of a liquid helium cryostat. The HEBs were operated at a bath temperature of 4.2 K. The signal beam was terminated on black bodies at ambient and liquid nitrogen temperatures. A chopper wheel placed in front of the cryostat window operating at a frequency of 1.48 kHz modulated the input load temperature of the detector. A cold mesh filter, centered at 830 GHz, was used to define the input signal power bandwidth. Microwave was injected through a broadband directional coupler inside the cryostat. Our experiments were mostly conducted at a pump frequency of 1.5 GHz. The reflected microwave power from the HEB device was fed into a cryogenic low noise amplifier (LNA). The output of the LNA was connected to the RF input port of a room temperature microwave mixer, which beat the reflected signal from the HEB using a copy of the original 1.5 GHz injection signal in a homodyne demodulation scheme. The amplitude of the detected power was measured by a lock-in amplifier, which was synchronized to the chopper frequency. Preliminary results yield an optical NEP of ~1 pW/ Hz 1/2 which corresponds to an improvement of a factor of 3 compared to [1], driven mainly by a lowering of the system noise floor. The dynamic range was also increased by similar amount. References 1. A. Shurakov et al. “A Microwave Pumped Hot Electron Bolometric Direct Detector,” submitted on Oct 18, 2013 to Appl. Phys. Let.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1365  
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Edward; Blundell, Raymond; Gol'tsman, Gregory openurl 
  Title Microwave stabilization of HEB mixer by a microchip controller Type Conference Article
  Year 2012 Publication IEEE MTT-S international microwave symposium digest Abbreviated Journal  
  Volume Issue Pages 1-3  
  Keywords HEB mixer stability, microwave injection, Allan variance, Allan time  
  Abstract The stability of a Hot Electron Bolometer (HEB) mixer can be improved by the use of microwave injection. In this article we report a refinement of this approach. We introduce a microchip controller to facilitate the implementation of the stabilization scheme, and demonstrate that the feedback loop effectively suppresses drifts in the HEB bias current, leading to an improvement in the receiver stability. The measured Allan time of the mixer's IF output power is increased to > 10 s.  
  Address Montreal, QC, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 857  
Permanent link to this record
 

 
Author Siddiqi, I.; Prober, D. E. url  doi
openurl 
  Title Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection Type Journal Article
  Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 8 Pages 1404  
  Keywords HEB, mixers, dynamic range, saturation, LO power, local oscillator power, Nb  
  Abstract The sensitivity of present Nb diffusion-cooled hot-electron bolometer (HEB) mixers is not quantum limited, and can be improved by reducing the superconducting transition temperature TC. Lowering TC reduces thermal fluctuations, resulting in a decrease of the mixer noise temperature TM. However, lower TC mixers have reduced dynamic range and saturate more easily due to background noise. We present 30 GHz microwave measurements on a bilayer HEB system, Nb–Au, in which TC can be tuned with Au layer thickness to obtain the maximum sensitivity for a given noise background. These measurements are intended as a guide for the optimization of THz mixers. Using a Nb–Au mixer with TC = 1.6 K, we obtain TM = 50 K with 2 nW of local oscillator (LO) power. Good mixer performance is observed over a wide range of LO power and bias voltage and such a device should not exhibit saturation in a THz receiver.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 571  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A. url  doi
openurl 
  Title Electron energy relaxation in disordered superconducting NbN films Type Journal Article
  Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 102 Issue 5 Pages 054501 (1 to 15)  
  Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time  
  Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1266  
Permanent link to this record
 

 
Author Skalare, A.; McGrath, William R.; Echternach, P. M.; Leduc, H. G.; Siddiqi, I.; Verevkin, A.; Prober, D. E. doi  openurl
  Title Aluminum hot-electron bolometer mixers at submillimeter wavelengths Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 11 Issue 1 Pages 641-644  
  Keywords Al HEB mixer, contacts, interface, in situ, in-situ, Aluminium HEB mixer  
  Abstract Diffusion-cooled aluminum hot-electron bolometer (HEB) mixers are of interest for low-noise high resolution THz-frequency spectroscopy within astrophysics. Al HEB mixers offer operation with an order of magnitude less local oscillator power, higher intermediate frequency bandwidth and potentially lower noise than competing devices made from other materials. We report on mixer experiments at 618 GHz with devices fabricated from films with sheet resistances in the range from about 55 Ω down to about 9 Ω per square. Intermediate frequency bandwidths of up to 3 GHz were measured (1 μm long device), with absorbed local oscillator power levels of 0.5 to 6 nW and mixer conversion up to -21.5 dB. High input coupling efficiency implies that the electrons in the device are able to thermalize before escaping from the device. It was found that the long coherence length complicates mixer operations due to the proximity of the contact pads. Also, saturation at the IF frequency may be a concern for this type of device, and warrants further studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ref919426b Serial 1061  
Permanent link to this record
 

 
Author Smirnov, A. V.; Baryshev, A. M.; de Bernardis, P.; Vdovin, V. F.; Gol'tsman, G. N.; Kardashev, N. S.; Kuz'min, L. S.; Koshelets, V. P.; Vystavkin, A. N.; Lobanov, Yu. V.; Ryabchun, S. A.; Finkel, M. I.; Khokhlov, D. R. doi  openurl
  Title The current stage of development of the receiving complex of the millimetron space observatory Type Journal Article
  Year 2012 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 54 Issue 8 Pages 557-568  
  Keywords Millimetron space observatory, HEB applications  
  Abstract We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1079  
Permanent link to this record
 

 
Author Smirnov, A. V.; Karmantsov, M. S.; Smirnov, K. V.; Vakhtomin, Y. B.; Masterov, D. V.; Tarkhov, M. A.; Pavlov, S. A.; Parafin, A. E. url  doi
openurl 
  Title Terahertz response of thin-film YBCO bolometers Type Journal Article
  Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.  
  Volume 57 Issue 12 Pages 1716-1719  
  Keywords YBCO HEB  
  Abstract The bolometric response of high-temperature thin-film YBCO superconducting detectors to an electromagnetic radiation with a frequency of 2.5 THz is measured for the first time. The minimum value of the noise-equivalent power of the detectors is 3.5 × 10−9 W/Hz−−−√. The feasibility of further increasing the sensitivity of the detectors is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7842 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: