|   | 
Details
   web
Records
Author
Title ГОСТ 2.501-88. ЕСКД. Правила учета и хранения Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords gost, detproj
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 862
Permanent link to this record
 

 
Author
Title ГОСТ 3.1102-81. ЕСТД. Стадии разработки и виды документов Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords gost, detproj
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 868
Permanent link to this record
 

 
Author
Title ГОСТ 3.1121-84. ЕСТД. Общие требования к комплектности и оформлению документов на типовые и групповые технологические процессы (операции) Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords gost, detproj
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 870
Permanent link to this record
 

 
Author Baryshev A.; Hovenier J.N.; Adam A.J.L.; Kašalynas I.; Gao J.R.; Klaassen T.O.; Williams B.S.; Kumar S.; Hu Q.; Reno J.L.
Title Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser Type Journal Article
Year 2006 Publication Physics Letters Abbreviated Journal
Volume 89 Issue Pages (up)
Keywords
Abstract We have studied the phase locking and spectral linewidth of an ~ 2.7 THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8 GHz is compared with a microwave eference by applying conventional phase lock loop circuitry with feedback to the laser bias current. Phase locking has been demonstrated, resulting in a narrow beat linewidth of less than 10 Hz. Under requency stabilization we find that the terahertz line profile is essentially Lorentzian with a minimum linewidth of ~ 6.3 kHz. Power dependent measurements suggest that this linewidth does not approach the Schawlow-Townes limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 967
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Tarkhov, M.; Korneev, A.; Minaeva, O.; Voronov, B.; Divochiy, A.; Gol'tsman, G.; Kitaygorsky, J.; Pan, D.; Sobolewski, R.
Title Superconducting single-photon nanostructured detectors for advanced optical applications Type Conference Article
Year 2006 Publication Proc. Symposium on Photonics Technologies for 7th Framework Program Abbreviated Journal
Volume 400 Issue Pages (up)
Keywords SSPD, SNSPD
Abstract We present superconducting single-photon detectors (SSPDs) based on NbN thin-film nanostructures and operated at liquid helium temperatures. The SSPDs are made of ultrathin NbN films (2.5-4 nm thick, Tc= 9-11K) as meander-shaped nanowires covering the area of 10× 10 µm2. Our detectors are operated at the temperature well below the critical temperature Tc and are DC biased by a current Ib close to the meander critical current Ic. The operation principle of the detector is based on the use of the resistive region in a narrow ultra-thin superconducting stripe upon the absorption of an incident photon. The developed devices demonstrate high sensitivity and response speed in a broadband range from UV to mid-IR (up to 6 µm), making them very attractive for advanced optical technologies, which require efficient detectors of single quanta and low-density optical radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ chulkova2006superconducting Serial 1021
Permanent link to this record