toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tong, C.-Y.E.; Meledin, D.V.; Marrone, D.P.; Paine, S.N.; Gibson, H.; Blundell, R. url  doi
openurl 
  Title Near field vector beam measurements at 1 THz Type Journal Article
  Year 2003 Publication IEEE Microw. Compon. Lett. Abbreviated Journal  
  Volume 13 Issue 6 Pages (up) 235-237  
  Keywords HEB, mixer, waveguide, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract We have performed near-field vector beam measurements at 1.03 THz to characterize and align the receiver optics of a superconducting receiver. The signal source is a harmonic generator mounted on an X-Y translation stage. We model the measured two-dimensional complex beam pattern by a fundamental Gaussian mode, from which we derive the position of the beam center, the beam radius and the direction of propagation. By performing scans in the planes separated by 400 mm, we have confirmed that our beam pattern measurements are highly reliable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 574  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  openurl
  Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 254-261  
  Keywords NbN HEB mixers  
  Abstract We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1626  
Permanent link to this record
 

 
Author Kawamura, J.; Hunter, T. R.; Tong, C. Y. E.; Blundell, R.; Papa, D. C.; Patt, F.; Peters, W.; Wilson, T.; Henkel, C.; Goltsman, G.; Gershenzon, E. url  doi
openurl 
  Title Ground-based terahertz CO spectroscopy towards Orion Type Journal Article
  Year 2002 Publication A&A Abbreviated Journal A&A  
  Volume 394 Issue 1 Pages (up) 271-274  
  Keywords HEB mixers, applications  
  Abstract Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO () spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, , high density molecular gas, , is quite extended, found along a ~ region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with and ≈ . The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 322  
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, C.; Blundell, R.; Gol'tsman, G. url  openurl
  Title A study of direct detection effect on the linearity of hot electron bolometer mixers Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages (up) 282-287  
  Keywords HEB mixer, direct detection effect  
  Abstract We have performed a study of how direct detection affects the linearity and hence the calibration of an HEB mixer. Two types of waveguide HEB devices have been used: a 0.8 THz HEB mixer and a 1.0 THz HEB mixer which is ~5 times smaller than the former. Two independent experimental approaches were used. In the ΔG/G method, the conversion gain of the HEB mixer is first measured as a function of the bias current for a number of bias voltages. At each bias setting, we carefully measure the change in the operating current when the input loads are switched. From the measured data, we can derive the expected difference in gain between the hot and cold loads. In the second method (injection method [1]), the linearity of the HEB mixer is independently measured by injecting a modulated signal for different input load temperatures. The results of both approaches confirm that there is gain compression in the operation of HEB mixers. Based on the results of our measurements, we discuss the impact of direct detection effects on the operation of HEB mixers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 724  
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Meledin, Denis; Blundell, Raymond; Erickson, Neal; Kawamura, Jonathan; Mehdi, Imran; Gol'tsman, Gregory url  openurl
  Title A 1.5 THz hot-electron bolometer mixer operated by a planar diode-based local oscillator Type Abstract
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 286  
  Keywords waveguide NbN HEB mixers  
  Abstract We describe a 1.5 THz heterodyne receiver based on a superconductin g hot-electron bolometer mixer, which is pumped by an all-solid-state local oscillator chain. The bolometer is fabricated from a 3.5 nm-thick niobium nitride film deposited on a quartz substrate with a 200 nm-thick magnesium oxide buffer layer. The bolometer measures 0.15 fun in width and 1.5 1..tm in length. The chip consisting of the bolometer and mixer circuitry is incorporated in a fixed-tuned waveguide mixer block with a corru g ated feed horn. The local oscillator unit comprises of a cascade of four planar doublers followin g a MMIC-based W-band power amplifier. The local oscillator is coupled to the mixer using a Martin-Puplett interferometer. The local oscillator output power needed for optimal receiver performance is approximately 1 to 2 11W, and the chain is able to provide this power at a number of frequency points between 1.45 and 1.56 THz. By terminating the rf input with room temperature and 77 K loads, a Y-factor of 1.11 (DSB) has been measured at a local oscillator frequency of 1.476 THz at 3 GHz intermediate frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1501  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: