|   | 
Details
   web
Records
Author Puscasu, Irina; Boreman, Glenn D.
Title Theoretical and experimental analysis of transmission and enchanced absorption of frequency selective surfaces in the infrared Type Conference Article
Year 2001 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4293 Issue Pages (up) 185-190
Keywords optical antennas
Abstract A comparative study between theory and experiment is presented for transmission through lossy frequency selective surfaces (FSSs) on silicon in the 2 – 15 micrometer range. Important parameters controlling the resonance shape and location are identified: dipole length, spacing, impedance, and dielectric surroundings. Their separate influence is exhibited. The primary resonance mechanism of FSSs is the resonance of the individual metallic patches. There is no discernable resonance arising from a feed-coupled configuration. The real part of the element's impedance controls the minimum value of transmission, while scarcely affecting its location. Varying the imaginary part shifts the location of resonance, while only slightly changing the minimum value of transmission. With such fine-tuning, it is possible to make a good fit between theory and experiment near the dipole resonance on any sample. A fixed choice of impedance can provide a reasonable fit to all samples fabricated under the same conditions. The dielectric surroundings change the resonance wavelength of the FSS compared to its value in air. The presence of FSS on the substrate increases the absorptivity/emissivity of the surface in a resonant way. Such enhancement is shown for dipole and cross arrays at several wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 753
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Schubert, J.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Krabbe, A.; Roeser, H.-P.
Title NbN hot-electron bolometer as THz mixer for SOFIA Type Conference Article
Year 2000 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4014 Issue Pages (up) 195-202
Keywords NbN HEB mixers, airborne, stratospheric observatory, SOFIA
Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. We have investigated phonon- cooled NbN hot electron bolometric mixers in the frequency range from 0.7 THz to 5.2 THz. The devices were 3.5 nm thin films with an in-plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The best measured DSB receiver noise temperatures are 1300 K (0.7 THz), 2000 K (1.4 THz), 2100 K (1.6 THz), 2600 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz), and 8800 K (5.2 THz). The sensitivity fluctuation, the long term stability, and the antenna pattern were measured. The results demonstrate that this mixer is very well suited for GREAT, the German heterodyne receiver for SOFIA.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Melugin, R.K.; Roeser, H.-P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Airborne Telescope Systems
Notes Approved no
Call Number Serial 1554
Permanent link to this record
 

 
Author Brown, Robert. L.
Title Technical specification of the Millimeter Array Type Conference Article
Year 1998 Publication Proc. SPIE, Advanced Technology MMW, Radio, and Terahertz Telescopes, vol. 3357 Abbreviated Journal
Volume Issue Pages (up) 231-237
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Phillips, Thomas G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Address is unknown Approved no
Call Number RPLAB @ s @ ALMA_tech Serial 287
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.
Title Hot-electron superconducting mixers Type Conference Article
Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2104 Issue Pages (up) 329-330
Keywords
Abstract The creation of low noise heterodyne receivers for frequencies above 1 THz is in the urgentneed for radio astronomy, laser spectroscopy, plasma diagnostic, etc. In this paper we discussthe nonlinear effect related to hot electrons in superconductors, and their potential use in lownoise submilimeter wave mixer. We also discuss results achieved so far as well as possible futuredevelopments.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Birch, J.R.; Parker, T.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves
Notes Approved no
Call Number Serial 1654
Permanent link to this record
 

 
Author Hoogeveen, R. W. M.; Yagoubov, P. A.; Maurellis, A.; Koshelets, V. P.; Shitov, S. V.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Huebers, H.-W.; Richter, H.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Ellison, B.N.; Kerridge, B.J.; Matheson, D. N.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J.
Title New cryogenic heterodyne techniques applied in TELIS: the balloonborne THz and submillimeter limb sounder for atmospheric research Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5152 Issue Pages (up) 347-355
Keywords TELIS, limb sounder, heterodyne detection, terahertz, sub millimeter, cryogenic, limb sounding, balloon borne, atmospheric research
Abstract We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth’s atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organization of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) will utilize state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument cpaable of providing broad spectral coverage, high spectral resolution and long flight duration ( 24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constitutenets sucyh as OH, HO2, ClO, BrO togehter will onger lived constituents such as O3, HCL and N2O. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spaceborne instruments planned by the European Space Agency (ESA).
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Strojnik, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Infrared Spaceborne Remote Sensing XI
Notes Approved no
Call Number Serial 1508
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3795 Issue Pages (up) 357-368
Keywords NbN HEB mixers
Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Photonics
Notes Approved no
Call Number Serial 1561
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages (up) 361-370
Keywords NbN HEB mixers
Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G. N.; Voronov, B. M.
Title Superconducting hot electron bolometer as mixer for far-infrared heterodyne receivers Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages (up) 395-401
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Tucson, USA Editor Phillips, T. G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Abbreviated Series Title
Series Volume 4855 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 335
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W.
Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3828 Issue Pages (up) 410-416
Keywords NbN HEB mixers
Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Chamberlain, J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Spectroscopy and Applications II
Notes Approved no
Call Number Serial 1477
Permanent link to this record
 

 
Author Verevkin, A. A.; Zhang, J.; Slysz, W.; Sobolewski, R.; Lipatov, A. P.; Okunev, O.; Chulkova, G.; Korneev, A.; Gol’tsman, G. N.
Title Superconducting single-photon detectors for GHz-rate free-space quantum communications Type Conference Article
Year 2002 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4821 Issue Pages (up) 447-454
Keywords NbN SSPD, SNSPD, single-photon detector, thin-film superconductivity, quantum cryptography, ultrafast communications
Abstract We report our studies on the performance of new NbN ultrathin-film superconducting single-photon detectors (SSPDs). Our SSPDs exhibit experimentally measured quantum efficiencies from   5% at wavelength λ = 1550 nm up to  10% at λ = 405 nm, with exponential, activation-energy-type spectral sensitivity dependence in the 0.4-μm – 3-μm wavelength range. Using a variable optical delay setup, we have shown that our NbN SSPDs can resolve optical photons with a counting rate up to 10 GHz, presently limited by the read-out electronics. The measured device jitter was below 35 ps under optimum biasing conditions. The extremely high photon counting rate, together with relatively high (especially for λ > 1 μm) quantum efficiency, low jitter, and very low dark counts, make NbN SSPDs very promising for free-space communications and quantum cryptography.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Ricklin, J.C.; Voelz, D.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Free-Space Laser Communication and Laser Imaging II
Notes Approved no
Call Number Serial 1523
Permanent link to this record