|   | 
Details
   web
Records
Author Gol’tsman, G. N.; Semenov, A. D.; Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gershenzon, E. M.
Title Electron-phonon interaction in thin YBaCuO films and fast detectors Type Conference Article
Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences
Volume 112 Issue Pages (up) 184-185
Keywords YBCO HTS detectors
Abstract The thin. YBaCuO film response to laser and submillimeter radiation demonstrates the picosecond nonequilibrium peak on the nanosecond bolometric background. Experimental data give an evidence for the spectral dependence of picosecond photoresponse probably due to a poor efficiency of electron multiplication processes. Presented results prove an availability of fast YBaCuO thin film detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992
Notes Approved no
Call Number Serial 1662
Permanent link to this record
 

 
Author Puscasu, Irina; Boreman, Glenn D.
Title Theoretical and experimental analysis of transmission and enchanced absorption of frequency selective surfaces in the infrared Type Conference Article
Year 2001 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4293 Issue Pages (up) 185-190
Keywords optical antennas
Abstract A comparative study between theory and experiment is presented for transmission through lossy frequency selective surfaces (FSSs) on silicon in the 2 – 15 micrometer range. Important parameters controlling the resonance shape and location are identified: dipole length, spacing, impedance, and dielectric surroundings. Their separate influence is exhibited. The primary resonance mechanism of FSSs is the resonance of the individual metallic patches. There is no discernable resonance arising from a feed-coupled configuration. The real part of the element's impedance controls the minimum value of transmission, while scarcely affecting its location. Varying the imaginary part shifts the location of resonance, while only slightly changing the minimum value of transmission. With such fine-tuning, it is possible to make a good fit between theory and experiment near the dipole resonance on any sample. A fixed choice of impedance can provide a reasonable fit to all samples fabricated under the same conditions. The dielectric surroundings change the resonance wavelength of the FSS compared to its value in air. The presence of FSS on the substrate increases the absorptivity/emissivity of the surface in a resonant way. Such enhancement is shown for dipole and cross arrays at several wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 753
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Mel'nikov, A. P.
Title Binding energy of a carrier with a neutral impurity atom in germanium and in silicon Type Journal Article
Year 1971 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 14 Issue 5 Pages (up) 185-186
Keywords Ge, Si, neutral impurity atom, binding energy
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1739
Permanent link to this record
 

 
Author Wild, Wolfgang; Baryshev, Andrey; de Graauw, Thijs; Kardashev, Nikolay; Likhachev, Sergey; Goltsman, Gregory; Koshelets, Valery
Title Instrumentation for Millimetron – a large space antenna for THz astronomy Type Conference Article
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 186-191
Keywords Millimetron space observatory, VLBI
Abstract Millimetron is a Russian-led 12m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation and funded for launch after 2015. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron is currently in a conceptual design phase carried out by the Astro Space Center in Moscow and SRON Netherlands Institute for Space Research. It will use a passively cooled deployable antenna with a high-precision central 3.5m diameter mirror and high- precision antenna petals. The antenna is specified for observations up to ~2 THz over the whole 12m diameter, and to higher frequencies using the central 3.5m solid mirror. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space VLBI system. As single-dish, angular resolutions on the order of 3 to 12 arcsec will be achieved and spectral resolutions of up to 10 6 employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines resulting in micro-arcsec angular resolution. The scientific payload will consist of heterodyne and direct detection instruments covering the most important sub-/millimeter spectral regions (including some ALMA bands) and will build on the Herschel and ALMA heritage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1412
Permanent link to this record
 

 
Author Tetsu Suzuki; Chris Mann; Takanari Yasui; Hirotomo Fujishima; Koji Mizuno
Title Quasi–integrated planar Schottky barrier diodes for 2.5 THz receivers Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages (up) 187
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ schottky_Tn_24000_at_2p5THz Serial 284
Permanent link to this record