|   | 
Details
   web
Records
Author Shor, Peter W.
Title Quantum information theory: The bits don't add up Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue Pages (up) 247 - 248
Keywords fromIPMRAS
Abstract A counterexample to the 'additivity question', the most celebrated open problem in the mathematical theory of quantum information, casts doubt on the possibility of finding a simple expression for the information capacity of a quantum channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 800
Permanent link to this record
 

 
Author Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji; Suzaki, Yasumasa; Segawa, Toru; Sato, Tomonari; Kawaguchi, Yoshihiro; Takahashi, Ryo; Notomi, Masaya
Title Ultralow-power all-optical RAM based on nanocavities Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages (up) 248-252
Keywords fromIPMRAS
Abstract Optical random-access memory (o-RAM) has been regarded as one of the most difficult challenges in terms of replacing its various functionalities in electronic circuitry with their photonic counterparts. Nevertheless, it constitutes a key device in optical routing and processing. Here, we demonstrate that photonic crystal nanocavities with an ultrasmall buried heterostructure design can solve most of the problems encountered in previous o-RAMs. By taking advantage of the strong confinement of photons and carriers and allowing heat to escape efficiently, we have realized all-optical RAMs with a power consumption of only 30 nW, which is more than 300 times lower than the previous record, and have achieved continuous operation. We have also demonstrated their feasibility in multibit integration. This paves the way for constructing a low-power large-scale o-RAM system that can handle high-bit-rate optical signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 786
Permanent link to this record
 

 
Author Paiella, Roberto
Title Terahertz quantum cascade lasers: Going ultrafast Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue Pages (up) 253–255
Keywords fromIPMRAS
Abstract A new asynchronous coherent optical sampling method allows for the direct visualization of actively mode-locked quantum cascade laser pulses at terahertz wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 774
Permanent link to this record
 

 
Author Mineev, Vladimir P.
Title Superfluid helium: Order in disorder Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue Pages (up) 253–254
Keywords fromIPMRAS
Abstract Confining liquid 3He in porous silica aerogel prepared with strong anisotropy stabilizes a state of axial superfluidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 810
Permanent link to this record
 

 
Author Clerk, Aashish
Title Quantum phononics: To see a SAW Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 4 Pages (up) 256-257
Keywords fromIPMRAS
Abstract Mechanical oscillations of microscopic resonators have recently been observed in the quantum regime. This idea could soon be extended from localized vibrations to travelling waves thanks to a sensitive probe of so-called surface acoustic waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 811
Permanent link to this record
 

 
Author Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.
Title A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages (up) 259-264
Keywords fromIPMRAS
Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 790
Permanent link to this record
 

 
Author Mariantoni, Matteo; Wang, H.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, John M.; Cleland, A. N.
Title Photon shell game in three-resonator circuit quantum electrodynamics Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 4 Pages (up) 287-293
Keywords fromIPMRAS
Abstract The generation and control of quantum states of light constitute fundamental tasks in cavity quantum electrodynamics (QED). The superconducting realization of cavity QED, circuit QED (refs 11, 12, 13, 14), enables on-chip microwave photonics, where superconducting qubits control and measure individual photon states. A long-standing issue in cavity QED is the coherent transfer of photons between two or more resonators. Here, we use circuit QED to implement a three-resonator architecture on a single chip, where the resonators are interconnected by two superconducting phase qubits. We use this circuit to shuffle one- and two-photon Fock states between the three resonators, and demonstrate qubit-mediated vacuum Rabi swaps between two resonators. By shuffling superposition states we are also able to demonstrate the high-fidelity phase coherence of the transfer. Our results illustrate the potential for using multi-resonator circuits as photon quantum registers and for creating multipartite entanglement between delocalized bosonic modes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 838
Permanent link to this record
 

 
Author Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F.
Title Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue Pages (up) 312 - 315
Keywords optical antennas
Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 747
Permanent link to this record
 

 
Author Fazal, Furqan M.; Block, Steven M.
Title Optical tweezers study life under tension Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue 6 Pages (up) 318-321
Keywords fromIPMRAS
Abstract Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 776
Permanent link to this record
 

 
Author Wu, Ming C.
Title Optoelectronic tweezers Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon
Volume 5 Issue 6 Pages (up) 322-324
Keywords fromIPMRAS
Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 775
Permanent link to this record