|   | 
Details
   web
Records
Author Zhang, W.; Li, N.; Jiang, L.; Ren, Y.; Yao, Q.-J.; Lin, Z.-H.; Shi, S.-C.; Voronov, B. M.; Gol’tsman, G. N.
Title Dependence of noise temperature of quasi-optical superconducting hot-electron bolometer mixers on bath temperature and optical-axis displacement Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6840 Issue Pages (down) 684007 (1 to 8)
Keywords NbN HEB mixers, noise temperature, LO power
Abstract It is known that the increase of bath temperature results in the decrease of critical current of superconducting hot-electron bolometer (HEB) mixers owing to the depression of superconductivity, thus leading to the degradation of the mixer’s sensitivity. Here we report our study on the effect of bath temperature on the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers incorporated with a two-arm log-spiral antenna. The correlation between the bath temperature, critical current, LO power requirement and noise temperature is investigated at 0.5 THz. Furthermore, the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers is examined while there is an optical-axis displacement between the center of the extended hemispherical silicon lens and the superconducting NbN HEB device, which is placed on the back of the lens. Detailed experimental results and analysis are presented.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Zhang, C.; Zhang, X.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Photonics
Notes Approved no
Call Number Serial 1415
Permanent link to this record
 

 
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.
Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 11 Pages (down) 111113-(1-3)
Keywords HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz
Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 624
Permanent link to this record
 

 
Author Tol, J. van; Brunel, L.-C.; Wylde, R. J.
Title A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz Type Journal Article
Year 2005 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 76 Issue 7 Pages (down) 074101 (1 to 8)
Keywords Schottky, noise temperature
Abstract A new multifrequency quasioptical electron paramagnetic resonance (EPR) spectrometer is described. The superheterodyne design with Schottky diode mixer/detectors enables fast detection with subnanosecond time resolution. Optical access makes it suitable for transient EPR (TR-EPR) at 120 and 240 GHz. These high frequencies allow for an accurate determination of small g-tensor anisotropies as are encountered in excited triplet states of organic molecules like porphyrins and fullerenes. The measured concentration sensitivity for continuous-wave (cw) EPR at 240 GHz and at room temperature without cavity is 1013 spins/cm3 (15 nM) for a 1 mT linewidth and a 1 Hz bandwidth. With a Fabry-Perot cavity and a sample volume of 30 nl, the sensitivity at 240 GHz corresponds to [approximate]3×109 spins for a 1 mT linewidth. The spectrometer's performance is illustrated with applications of transient EPR of excited triplet states of organic molecules, as well as cw EPR of nitroxide reference systems and a thin film of a colossal magnetoresistance material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Actually, noise spectral density is given (3e-19 W/Hz) Approved no
Call Number Serial 588
Permanent link to this record
 

 
Author Hoevers, H. F. C.; Bento, A. C.; Bruijn, M. P.; Gottardi, L.; Korevaar, M. A. N.; Mels, W. A.; de Korte, P. A. J.
Title Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer Type Journal Article
Year 2000 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 77 Issue 26 Pages (down) 4421-4424
Keywords TES; bolometer; thermal fluctuation noise; TFN
Abstract The current noise at the output of a microcalorimeter with a voltage biased superconducting transition edge thermometer is studied in detail. In addition to the two well-known noise sources: thermal fluctuation noise from the heat link to the bath and Johnson noise from the resistive thermometer, a third noise source strongly correlated with the steepness of the thermometer is required to fit the measured noise spectra. Thermal fluctuation noise, originating in the thermometer itself, fully explains the additional noise. A simple model provides quantitative agreement between the observed and calculated noise spectra for all bias points in the superconducting transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 759
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages (down) 2814-2816
Keywords NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record