toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N. doi  openurl
  Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages (down) 2300704 (1 to 4)  
  Keywords HEB mixer, IR, optical antenna  
  Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 952  
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G. url  doi
openurl 
  Title A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages (down) 2300604 (1 to 4)  
  Keywords NbN HEB mixer  
  Abstract A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1354  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages (down) 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
 

 
Author Shurakov, A.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Microwave stabilization of a HEB mixer in a pulse-tube cryocooler Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages (down) 1501504-1501504  
  Keywords NbN HEB mixers  
  Abstract We report the results of our study of the stability of an 800 GHz hot electron bolometer (HEB) mixer cooled with a pulse-tube cryocooler. Pulse-tube cryocoolers introduce temperature fluctuations as well as mechanical vibrations at a frequency of ~1 Hz, both of which can cause receiver gain fluctuations at that frequency. In our system, the motor of the cryocooler was separated from the cryostat to minimize mechanical vibrations, leaving thermal effects as the dominant source of the receiver gain fluctuations. We measured root mean square temperature variations of the 4 K stage of ~7 mK. The HEB mixer was pumped by a solid state local oscillator at 810 GHz. The root mean square current fluctuations at the low noise operating point (1.50 mV, 56.5 μA) were ~0.12 μA, and were predominantly due to thermal fluctuations. To stabilize the bias current, microwave radiation was injected to the HEB mixer. The injected power level was set by a proportional-integral-derivative controller, which completely compensates for the bias current oscillations induced by the pulse-tube cryocooler. Significant improvement in the Allan variance of the receiver output power was obtained, and an Allan time of 5 s was measured.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1372  
Permanent link to this record
 

 
Author Zhang, W.; Li, N.; Jiang, L.; Ren, Y.; Yao, Q.-J.; Lin, Z.-H.; Shi, S.-C.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Dependence of noise temperature of quasi-optical superconducting hot-electron bolometer mixers on bath temperature and optical-axis displacement Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6840 Issue Pages (down) 684007 (1 to 8)  
  Keywords NbN HEB mixers, noise temperature, LO power  
  Abstract It is known that the increase of bath temperature results in the decrease of critical current of superconducting hot-electron bolometer (HEB) mixers owing to the depression of superconductivity, thus leading to the degradation of the mixer’s sensitivity. Here we report our study on the effect of bath temperature on the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers incorporated with a two-arm log-spiral antenna. The correlation between the bath temperature, critical current, LO power requirement and noise temperature is investigated at 0.5 THz. Furthermore, the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers is examined while there is an optical-axis displacement between the center of the extended hemispherical silicon lens and the superconducting NbN HEB device, which is placed on the back of the lens. Detailed experimental results and analysis are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Zhang, C.; Zhang, X.-C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Photonics  
  Notes Approved no  
  Call Number Serial 1415  
Permanent link to this record
 

 
Author Barends, R.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M. openurl 
  Title Current-induced vortex unbinding in bolometer mixers Type Journal Article
  Year 2005 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 87 Issue Pages (down) 263506 (1 to 3)  
  Keywords HEB mixer numerical model, HEB model, IV-curves, vortex-antivortex, Berezinskii–Kosterlitz–Thouless theory, diffusion cooling channel, diffusion channel, distributed HEB model, distributed model, self-heating effect, temperature profile  
  Abstract We present a description of the current-voltage characteristics of hot electron bolometers in terms of the current-dependent intrinsic resistive transition of NbN films. We find that, by including this current dependence, we can correctly predict the complete current-voltage characteristics, showing excellent agreement with measurements for both low and high bias and for small as well as large devices. It is assumed that the current dependence is due to vortex-antivortex unbinding as described in the Berezinskii–Kosterlitz–Thouless theory. The presented approach will be useful in guiding device optimization for noise and bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 604  
Permanent link to this record
 

 
Author Khosropanah, P.; Gao, J. R.; Laauwen, W. M.; Hajenius, M; Klapwijk, T. M. openurl 
  Title Low noise NbN hot electron bolometer mixer at 4.3 THz Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue Pages (down) 221111 (1 to 3)  
  Keywords NbN HEB mixers, NbN, contacts cleaning  
  Abstract We have studied the sensitivity of a superconducting NbN hot electron bolometer mixer integrated with a spiral antenna at 4.3 THz. Using hot/cold blackbody loads and a beam splitter all in vacuum, we measured a double sideband receiver noise temperature of 1300 K at the optimum local oscillator (LO) power of 330 nW, which is about 12 times the quantum noise (hnu/2kB). Our result indicates that there is no sign of degradation of the mixing process at the superterahertz frequencies. Moreover, a measurement method is introduced which allows us for an accurate determination of the sensitivity despite LO power fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 584  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol’tsman, G. url  doi
openurl 
  Title Time domain analysis of coherent terahertz synchrotron radiation Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 87 Issue 18 Pages (down) 184103 (1 to 3)  
  Keywords NbN HEB mixers, applications  
  Abstract The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ∼1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (∼5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1457  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. doi  openurl
  Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 109 Issue 13 Pages (down) 132602  
  Keywords HEB mixer, contacts  
  Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1107  
Permanent link to this record
 

 
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M. openurl 
  Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
  Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 96 Issue 11 Pages (down) 111113-(1-3)  
  Keywords HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz  
  Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 624  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 8 Pages (down) 085013 (1 to 5)  
  Keywords NbN HEB mixers  
  Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1358  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 8 Pages (down) 084510 (1 to 7)  
  Keywords NbN HEB mixers  
  Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electron bolometer mixer at 673GHz. We find that the small signal noise temperature, relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 and 77K calibration loads. In a separate set of experiments we show that the direct detection effect is caused by a combination of bias current reduction when switching from the 77 to the 300K

load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1442  
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K. url  doi
openurl 
  Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances  
  Volume 9 Issue 7 Pages (down) 075307  
  Keywords NbN HEB mixers, QCL, IR  
  Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1293  
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Kaurova, N.; Rudzinski, M.; Desmaris, V.; Belitsky, V.; Goltsman, G. url  doi
openurl 
  Title Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer Type Journal Article
  Year 2019 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 32 Issue 7 Pages (down) 075003  
  Keywords NbN HEB mixer, GaN buffer layer, sapphire substrate  
  Abstract We report on the signal-to-noise and gain bandwidth of a niobium nitride (NbN) hot-electron bolometer (HEB) mixer at 2 THz fabricated on a sapphire substrate with a GaN buffer layer. Two mixers with different DC properties and geometrical dimensions were studied and they demonstrated very close bandwidth performance. The signal-to-noise bandwidth is increased to 8 GHz in comparison to the previous results, obtained without a buffer-layer. The data were taken in a quasi-optical system with the use of the signal-to-noise method, which is close to the signal levels used in actual astrophysical observations. We find an increase of the gain bandwidth to 5 GHz. The results indicate that prior results obtained on a substrate of crystalline GaN can also be obtained on a conventional sapphire substrate with a few micron MOCVD-deposited GaN buffer-layer.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Antipov_2019 Serial 1277  
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Stability of heterodyne terahertz receivers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 6 Pages (down) 064904 (1 to 9)  
  Keywords NbN HEB mixers  
  Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1444  
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G. url  doi
openurl 
  Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6373 Issue Pages (down) 63730J (1 to 5)  
  Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations  
  Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Physics, Devices, and Systems  
  Notes Approved no  
  Call Number Serial 1441  
Permanent link to this record
 

 
Author Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A; Vacelet, T url  doi
openurl 
  Title Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges Type Journal Article
  Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal <ef><bf><bc>Appl. Phys. Lett.  
  Volume 104 Issue Pages (down) 052605(1-4)  
  Keywords NbN HEB mixers, local oscillator power, RF nonuniform absorption  
  Abstract We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 935  
Permanent link to this record
 

 
Author Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik openurl 
  Title Hot-electron bolometer terahertz mixers for the Herschel Space Observatory Type Journal Article
  Year 2008 Publication Review of Scientific Instruments Abbreviated Journal Rev. Sci. Instrum.  
  Volume 79 Issue Pages (down) 034501  
  Keywords HEB mixer, HEB detector, HEB direct detector, applications  
  Abstract We report on low noise terahertz mixers(1.4–1.9THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5to2.5THz, with 30GHz resolution) and also by measuring the mixernoise temperature at a limited number of discrete frequencies. The lowest mixernoise temperature recorded was 750K [double sideband (DSB)] at 1.6THz and 950KDSB at 1.9THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4–4.8GHz, the mixernoise temperature was 1100KDSB at 1.6THz and 1450KDSB at 1.9THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200–500nW range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 908  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
  Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 98 Issue Pages (down) 033507 (1 to 3)  
  Keywords NbN HEB mixer  
  Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 638  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages (down) 6758-6767  
  Keywords HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 306  
Permanent link to this record
 

 
Author Huebers, Heinz-Wilhelm; Pavlov, S.; Semenov, A.; Köhler, R.; Mahler, L.; Tredicucci, A.; Beere, H.; Ritchie, D.; Linfield, E. openurl 
  Title Terahertz quantum cascade laser as local oscillator in a heterodyne receiver Type Journal Article
  Year 2005 Publication Optics Express Abbreviated Journal  
  Volume 13 Issue 15 Pages (down) 5890-5896  
  Keywords QCL heterodyne, 6 mW at 2.5 THz, HEB mixer, terahertz  
  Abstract Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 627  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol'tsman, G. N. url  doi
openurl 
  Title Non-thermal response of a diffusion-cooled hot-electron bolometer Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages (down) 4491-4494  
  Keywords HEB mixers, non-thermal  
  Abstract We present an analysis of a diffusion-cooled hot-electron bolometer in the limiting case of a weak thermalization of non-equilibrium quasiparticles. We propose a new model relying on the non-thermal suppression of the superconducting energy gap by excess quasiparticles. Using material parameters typical for Al, we evaluate performance of the bolometer in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have quantum limited noise temperature and a few tens of GHz bandwidth, while the required local oscillator power is in the /spl mu/W range due to in-effective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1567  
Permanent link to this record
 

 
Author Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages (down) 4233-4236  
  Keywords NbN HEB mixers  
  Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 550  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.‐yu E.; Gol’tsman, G.; Gershenzon, E.; Voronov, B. url  doi
openurl 
  Title Performance of NbN lattice‐cooled hot‐electron bolometric mixers Type Journal Article
  Year 1996 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 80 Issue 7 Pages (down) 4232-4234  
  Keywords NbN HEB mixers  
  Abstract The heterodyne performance of lattice‐cooled hot‐electron bolometric mixers is measured at 200 GHz. Superconducting thin‐film niobium nitride strips with ∼5 nm thickness are used as waveguide mixer elements. A double‐sideband receiver noise temperature of 750 K at 244 GHz is measured at an intermediate frequency centered at 1.5 GHz with 500 MHz bandwidth and with 4.2 K device temperature. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator power required by the mixer is about 0.5 μW. The mixer is linear to within 1 dB up to an input power level 6 dB below the local oscillator power. A receiver incorporating a hot‐electron bolometric mixer was used to detect molecular line emission in a laboratory gascell. This experiment unambiguously confirms that the receiver noise temperature determined from Y‐factor measurements reflects the true heterodyne sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1607  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages (down) 4217-4220  
  Keywords NbN HEB mixers  
  Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1568  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages (down) 3757-3760  
  Keywords NbN HEB mixers  
  Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1569  
Permanent link to this record
 

 
Author Kawamura, J. H.; Tong, C.-Y.E.; Blundell, R.; Cosmo Papa, D.; Hunter, T. R.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title An 800 GHz NbN phonon-cooled hot-electron bolometer mixer receiver Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages (down) 3753-3756  
  Keywords NbN HEB mixers  
  Abstract We describe a heterodyne receiver developed for astronomical applications to operate in the 350 /spl mu/m atmospheric window. The waveguide receiver employs a superconductive NbN phonon-cooled hot-electron bolometer mixer. The double sideband receiver noise temperature closely follows 1 kGHz/sup -1/ across 780-870 GHz, with the intermediate frequency centered at 1.4 GHz. The conversion loss is about 15 dB. The receiver was installed for operation at the University of Arizona/Max Planck Institute for Radio Astronomy Submillimeter Telescope facility. The instrument was successfully used to conduct test observations of a number of celestial sources in a number of astronomically important spectral lines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 288  
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Renk, K. F.; Voronov, B. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Schwaab, G.W.; Feinaugle, R. url  doi
openurl 
  Title Noise characteristics of a NbN hot-electron mixer at 2.5 THz Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3572-3575  
  Keywords NbN HEB mixers  
  Abstract The noise temperature of a NbN phonon cooled hot-electron mixer has been measured at a frequency of 2.5 THz for various operating conditions. We obtained for optimal operation a double sideband mixer noise temperature of /spl ap/14000 K and a system conversion loss of /spl ap/23 dB at intermediate frequencies up to 1 GHz. The dependences of the mixer noise temperature on the bias voltage, local oscillator power, and intermediate frequency were consistent with the phenomenological description based on the effective temperature approximation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1594  
Permanent link to this record
 

 
Author Gousev, Y. P.; Semenov, A. D.; Goghidze, I. G.; Pechen, E. V.; Varlashkin, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Renk, K. F. url  doi
openurl 
  Title Current dependent noise in a YBa2Cu3O7-δ hot-electron bolometer Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3556-3559  
  Keywords YBCO HTS HEB mixers  
  Abstract We investigated the output noise of a YBa2Cu3O7-δ (YBCO) superconducting hot-electron bolometer (HEB) in a large frequency range (10 kHz to 8 GHz); the bolometer either consisted of a structured 50 nm thick YBCO film on LaAlO/sub 3/ or a 30 nm thick film on a MgO substrate. We found that flicker noise dominated at low frequencies (below 1 MHz), while at higher frequencies Johnson noise and a current dependent noise were the main noise sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1592  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S. url  doi
openurl 
  Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3548-3551  
  Keywords NbN HEB mixers  
  Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1595  
Permanent link to this record
 

 
Author Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Optical mixing in a patterned YBa2Cu3O7-δ thin film Type Journal Article
  Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 65 Issue 26 Pages (down) 3398-3400  
  Keywords YBCO HTS HEB mixer, bandwidth  
  Abstract Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 251  
Permanent link to this record
 

 
Author Svechnikov, S.; Gol'tsman, G.; Voronov, B.; Yagoubov, P.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekstrom, H.; Kollberg, E.; Semenov, A.; Gousev, Y.; Renk, K. url  doi
openurl 
  Title Spiral antenna NbN hot-electron bolometer mixer at submm frequencies Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3395-3398  
  Keywords NbN HEB mixers  
  Abstract We have studied the phonon-cooled hot-electron bolometer (HEB) as a quasioptical mixer based on a spiral antenna designed for the 0.3-1 THz frequency band and fabricated on sapphire and high resistivity silicon substrates. HEB devices were produced from superconducting 3.5-5 nm thick NbN films with a critical temperature 10-12 K and a critical current density of approximately 10/sup 7/ A/cm/sup 2/ at 4.2 K. For these devices we reached a DSB receiver noise temperature below 1500 K, a total conversion loss of L/sub t/=16 dB in the 500-700 GHz frequency range, an IF bandwidth of 3-4 GHz and an optimal LO absorbed power of /spl sime/4 /spl mu/W. We experimentally analyzed various contributions to the conversion loss and obtained an RF coupling factor of about 5 dB, internal mixer loss of 10 dB and IF mismatch of 1 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1597  
Permanent link to this record
 

 
Author Ekstörm, H.; Kollberg, E.; Yagoubov, P.; Gol'tsman, G.; Gershenzon, E.; Yngvesson, S. url  doi
openurl 
  Title Gain and noise bandwidth of NbN hot-electron bolometric mixers Type Journal Article
  Year 1997 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 70 Issue 24 Pages (down) 3296-3298  
  Keywords NbN HEB mixers, conversion loss, conversion gain, U-factor technique  
  Abstract We have measured the noise performance and gain bandwidth of 35 Å thin NbN hot-electron mixers integrated with spiral antennas on silicon substrate lenses at 620 GHz. The best double-sideband receiver noise temperature is less than 1300 K with a 3 dB bandwidth of ≈5 GHz. The gain bandwidth is 3.2 GHz. The mixer output noise dominated by thermal fluctuations is 50 K, and the intrinsic conversion gain is about −12 dB. Without mismatch losses and excluding the loss from the beamsplitter, we expect to achieve a receiver noise temperature of less than 700 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 279  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E. url  doi
openurl 
  Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 3065-3068  
  Keywords NbN HEB mixers  
  Abstract NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes About LO power required Approved no  
  Call Number Serial 255  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G. url  isbn
openurl 
  Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
  Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal Proc. 6th European Conf. Appl. Supercond.  
  Volume 181 Issue Pages (down) 2960-2965  
  Keywords NbN HEB mixers  
  Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.  
  Address Sorrento, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0750309814, 978-0750309813 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1505  
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 54 Issue 7 Pages (down) 2944-2948  
  Keywords NbN HEB mixers  
  Abstract In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1448  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E. url  doi
openurl 
  Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
  Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 73 Issue 19 Pages (down) 2814-2816  
  Keywords NbN HEB mixers, noise temperature, local oscillator power  
  Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 911  
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol'tsman, G.; Kollberg, E.; Winkler, D. url  doi
openurl 
  Title YBa2Cu3O7−δ hot-electron bolometer mixer Type Journal Article
  Year 2000 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 341-348 Issue Pages (down) 2653-2654  
  Keywords YBCO HTS HEB mixers  
  Abstract We present an investigation of hot-electron bolometric mixer based on YBa2Cu3O7−δ (YBCO) superconducting thin film. Mixer conversion loss, absorbed local oscillator power and intermediate frequency bandwidth was measured at the local oscillator frequency 600 GHz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated into planar antenna structure is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1552  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 47 Issue 12 Pages (down) 2519-2527  
  Keywords NbN HEB mixers  
  Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-9670 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1560  
Permanent link to this record
 

 
Author Zorin, M.; Gol'tsman, G.N.; Karasik, B.S.; Elantev, A.I.; Gershenzon, E.M.; Lindgren, M.; Danerud, M.; Winkler, D. url  doi
openurl 
  Title Optical mixing in thin YBa2Cu3O7-x films Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 2431-2434  
  Keywords YBCO HTS HEB mixers  
  Abstract High quality, j/sub c/ (77 K)>10/sup 6/ A/cm/sup 2/, epitaxial YBa2Cu3O7-x films of 50 nm thickness were patterned into ten parallel 1 /spl mu/m wide strips. The film structure was coupled to a single-mode fiber. Mixer response was obtained at 0.78 /spl mu/m using laser frequency modulation and an optical delay line. Using two semiconductor lasers at 1.55 /spl mu/m wavelength the beating signal was used to measure the photoresponse up to 18 GHz. Nonequilibrium photoresponse in the resistive state of the superconductor was observed. Bolometric response dominates up to 3 GHz, after which the nonequilibrium response is constant up to the frequency limit of our registration system. Using an electron heating model the influence of different thermal processes on the conversion loss has been analyzed. Ways of increasing the sensitivity are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1619  
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages (down) 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Pechen, E. V.; Krasnosvobodtsev, S. I. url  doi
openurl 
  Title Diffusion cooling mechanism in a hot-electron NbC microbolometer mixer Type Journal Article
  Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 68 Issue 16 Pages (down) 2285-2287  
  Keywords HEB mixer, diffusion cooling channel, diffusion channel  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 262  
Permanent link to this record
 

 
Author Karasik, B. S.; Gol'tsman, G. N.; Voronov, B. M.; Svechnikov, S. I.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Yngvesson, K. S. url  doi
openurl 
  Title Hot electron quasioptical NbN superconducting mixer Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 2232-2235  
  Keywords NbN HEB mixers  
  Abstract Hot electron superconductor mixer devices made of thin NbN films on SiO/sub 2/-Si/sub 3/N/sub 4/-Si membrane have been fabricated for 300-350 GHz operation. The device consists of 5-10 parallel strips each 5 /spl mu/m long by 1 /spl mu/m wide which are coupled to a tapered slot-line antenna. The I-V characteristics and position of optimum bias point were studied in the temperature range 4.5-8 K. The performance of the mixer at higher temperatures is closer to that predicted by theory for uniform electron heating. The intermediate frequency bandwidth versus bias has also been investigated. At the operating temperature 4.2 K a bandwidth as wide as 0.8 GHz has been measured for a mixer made of 6 nm thick film. The bandwidth tends to increase with operating temperature. The performance of the NbN mixer is expected to be better for higher frequencies where the absorption of radiation should be more uniform.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1622  
Permanent link to this record
 

 
Author Prober, D. E. openurl 
  Title Superconducting terahertz mixer using a transition-edge microbolometer Type Journal Article
  Year 1993 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 62 Issue 17 Pages (down) 2119-2121  
  Keywords HEB mixer, NbN, TES  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 244  
Permanent link to this record
 

 
Author Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title High resolution THz gas spectrometer based on semiconductor and superconductor devices Type Conference Article
  Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages (down) 02001 (1 to 2)  
  Keywords NbN HEB mixers, detectors, THz spectroscopy  
  Abstract The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1328  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers Type Journal Article
  Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 11 Pages (down) 1958-1960  
  Keywords NbN HEB mixers  
  Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. We show experimentally that both the receiver noise temperature and the gain bandwidth can be improved by more than a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature TN,DSB=950 K

at 2.5 THz and 4.3 K, uncorrected for losses in the optics. At the same bias point, we obtain an IF gain bandwidth of 6 GHz.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 352  
Permanent link to this record
 

 
Author Zhang, Wen; Li, Ning; Jiang, Ling; Miao, Wei; Lin, Zhen-Hui; Yao, Qi-Jun; Shi, Sheng-Cai; Chen, Jian; Wu, Pei-Heng; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N. url  doi
openurl 
  Title Noise behaviour of a THz superconducting hot-electron bolometer mixer Type Journal Article
  Year 2007 Publication Chinese Phys. Lett. Abbreviated Journal Chinese Phys. Lett.  
  Volume 24 Issue 6 Pages (down) 1778-1781  
  Keywords NbN HEB mixers  
  Abstract A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5–2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasi-optical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0256-307X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1430  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-yu E.; Gol’tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S. url  doi
openurl 
  Title Low noise NbN lattice-cooled superconducting hot-electron bolometric mixers at submillimeter wavelengths Type Journal Article
  Year 1997 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 70 Issue 12 Pages (down) 1619-1621  
  Keywords NbN HEB mixers  
  Abstract Lattice-cooled superconducting hot-electron bolometric mixers are used in a submillimeter-wave waveguide heterodyne receiver. The mixer elements are niobium nitride film with 3.5 nm thickness and ∼10 μm2 area. The local oscillator power for optimal performance is estimated to be 0.5 μW, and the instantaneous bandwidth is 2.2 GHz. At an intermediate frequency centered at 1.4 GHz with 200 MHz bandwidth, the double sideband receiver noise temperature is 410 K at 430 GHz. The receiver has been used to detect molecular line emission in a laboratory gas cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1599  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Elantiev, A. I.; Karasik, B. S.; Semenov, A. D. url  openurl
  Title Millimeter and submillimeter wave range mixer based on electronic heating of superconducting films in the resistive state Type Journal Article
  Year 1990 Publication Sov. Supercond. Abbreviated Journal Sov. Supercond.  
  Volume 3 Issue 10 Pages (down) 1582-1597  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 240  
Permanent link to this record
 

 
Author Burke, P. J.; Schoelkopf, R. J.; Prober, D. E.; Skalare, A.; Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; Leduc, H. G. openurl 
  Title Spectrum of thermal fluctuation noise in diffusion and phonon cooled hot-electron mixers Type Journal Article
  Year 1998 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 72 Issue 12 Pages (down) 1516-1518  
  Keywords HEB mixer; thermal fluctuation noise; TFN  
  Abstract A systematic study of the intermediate frequency noise bandwidth of Nb thin-film superconducting hot-electron bolometers is presented. We have measured the spectrum of the output noise as well as the conversion efficiency over a very broad intermediate frequency range (from 0.1 to 7.5 GHz) for devices varying in length from 0.08 μm to 3 μm. Local oscillator and rf signals from 8 to 40 GHz were used. For a device of a given length, the spectrum of the output noise and the conversion efficiency behave similarly for intermediate frequencies less than the gain bandwidth, in accordance with a simple thermal model for both the mixing and thermal fluctuation noise. For higher intermediate frequencies the conversion efficiency decreases; in contrast, the noise decreases but has a second contribution which dominates at higher frequency. The noise bandwidth is larger than the gain bandwidth, and the mixer noise is low, between 120 and 530 K (double side band).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 760  
Permanent link to this record
 

 
Author Trifonov, V. A.; Karasik, B. S.; Zorin, M. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Lindgren, M.; Danerud, M.; Winkler, D. url  doi
openurl 
  Title 9.6 μm wavelength mixing in a patterned YBa2Cu3O7‐δ thin film Type Journal Article
  Year 1996 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 68 Issue 10 Pages (down) 1418-1420  
  Keywords YBCO HTS HEB mixers  
  Abstract Hot‐electron bolometric (HEB) mixing of 9.6 μm infrared radiation from two lasers in high‐quality YBa2Cu3O7−δ (YBCO) patterned thin film has been demonstrated. A heterodyne measurement showed an intermediate frequency (IF) bandwidth of 18 GHz, limited by our measurement system. An intrinsic limit of 100 GHz is predicted. Between 0.1 and 1 GHz intermediate frequency, temperature fluctuations with an equivalent output noise temperature Tfl up to ∼150 K, contributed to the mixer noise while Johnson noise dominated above 1 GHz. The overall conversion loss at 77 K at low intermediate frequencies was measured to be ∼25 dB, of which 13 dB was due to the coupling loss. The HEB mixer is very promising for use in heterodyne receivers within the whole infrared range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1613  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Gousev, Y. P.; Elant’ev, A. I.; Semenov, A. D. url  doi
openurl 
  Title Electromagnetic radiation mixer based on electron heating in resistive state of superconductive Nb and YBaCuO films Type Journal Article
  Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.  
  Volume 27 Issue 2 Pages (down) 1317-1320  
  Keywords YBCO, HTS, Nb HEB mixers  
  Abstract A theory of an electron-heating mixer which makes it possible to calculate all the characteristics of the device is developed. It is shown that positive conversion gain is possible for such a mixer in the millimeter to near-infrared wavelength range. The dynamic range and the optimum heterodyne power can be selected from a very wide interval by varying the mixing element volume. Measurements made for Nb within the frequency range of 120-750 GHz confirm the theory. The conversion loss obtained at T=1.6 K and normalized to the element reaches 0.3 dB in the intermediate frequency band of 40 MHz; the possible noise temperature is 50 K. The estimation of noise temperature and output band for YBaCuO at T=77 yields 200 K and more than 10 GHz, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-0069 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1681  
Permanent link to this record
 

 
Author Rabanus, D.; Graf, U. U.; Philipp, M.; Ricken, O.; Stutzki, J.; Vowinkel, B.; Wiedner, M. C.; Walther, C.; Fischer, M.; Faist, J. openurl 
  Title Phase locking of a 1.5 terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver Type Journal Article
  Year 2009 Publication Optics Express Abbreviated Journal  
  Volume 17 Issue 3 Pages (down) 1159-1168  
  Keywords QCL heterodyne, 300 uW at 1.5 THz, HEB mixer  
  Abstract We demonstrate for the first time the closure of an electronic phase lock loop for a continuous–wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark–shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 628  
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N. url  doi
openurl 
  Title Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 36 Issue 12 Pages (down) 1103-1105  
  Keywords NbN HEB mixer  
  Abstract Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1389  
Permanent link to this record
 

 
Author Phillips, T. G.; Jefferts, K. B. doi  openurl
  Title A low temperature bolometer heterodyne receiver for Millimeter wave astronomy Type Journal Article
  Year 1973 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 44 Issue 8 Pages (down) 1009-1014  
  Keywords InSb HEB mixer  
  Abstract Liquid helium cooled InSb hot electronbolometers are used in a balanced mixer configuration as detectors for an imagelessmicrowave receiver. The system is designed for mounting at the prime focus of the National Radio Astronomy Observatory (NRAO) 11 m antenna at Kitt Peak, Arizona, and is suitable for the study of rotational line spectra of interstellar gas molecules. Currently the operating frequency is in the 90–140 GHz band where the double sideband system noise temperature is 250 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 927  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C.F.; Zhuang, Y.; Ji, M.; Yngvesson, K.S.; Goyette, T.; Waldman, J. openurl 
  Title NbN hot electron bolometric mixer with intrinsic receiver noise temperature of less than five times the quantum noise limit Type Conference Article
  Year 2000 Publication Proc. IMS Abbreviated Journal  
  Volume 2 Issue Pages (down) 1007-1010  
  Keywords HEB mixer  
  Abstract In recent years, improvements in device development and quasi-optical coupling techniques utilizing planar antennas have led to a significant achievement in low noise receivers for the edges of the submillimeter frequency regime. Hot electron bolometric (HEB) receivers made of thin superconducting films such as NbN have produced a viable option for instruments designed to measure the molecular spectra for astronomical applications as well as in remote sensing of the atmosphere in the THz regime. This paper describes an NbN HEB mixer with intrinsic DSB receiver noise temperature of at most five times the quantum noise limit at frequencies as high as 2.24 THz  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 477  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting hot-electron bolometer mixer as element of thermal imager matrix Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 36 Issue 11 Pages (down) 1006-1008  
  Keywords HEB mixers  
  Abstract The possibility of using a matrix of sensitive elements on a 12-mm-diameter hyperhemispherical lens in a thermal imager operating in the terahertz range has been studied. Dimensions of a lens region acceptable for arrangement of the matrix, in which the receiver noise temperature varies within 16% of the mean value, are determined to be 3.3% of the lens diameter. Deviations of the main lobe of the directivity pattern are evaluated, which amount to ±1.25° relative to the direction toward the optimum position of a mixer. The fluctuation sensitivity of the receiver measured in experiment is 0.5 K at a frequency of 300 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1390  
Permanent link to this record
 

 
Author Yagoubov, Pavel; Kroug, Matthias; Merkel, Harald; Kollberg, Erik; Schubert, Josef; Hübers, Heinz-Wilhelm url  doi
openurl 
  Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages (down) 989-991  
  Keywords NbN HEB mixers  
  Abstract The performance of NbN-based phonon-cooled hot electron bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1-0.2 µm; the width is 1-2 µm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power requirement is less than 500 nW at the receiver input. First results on spiral antenna polarization measurements are reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 295  
Permanent link to this record
 

 
Author Tretyakov, I. V.; Anfertyev, V. A.; Revin, L. S.; Kaurova, N. S.; Voronov, B. M.; Vaks, V. L.; Goltsman, G. N. url  doi
openurl 
  Title Sensitivity and resolution of a heterodyne receiver based on the NbN HEB mixer with a quantum-cascade laser as a local oscillator Type Journal Article
  Year 2018 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 60 Issue 12 Pages (down) 988-992  
  Keywords NbN HEB mixer  
  Abstract We present the results of experimental studies of the basic characteristics and operation features of a terahertz heterodyne detector based on the superconducting NbN HEB mixer and a quantum cascade laser as a local oscillator operating at a frequency of 2.02 THz. The measured noise temperature of such a mixer amounted to 1500 K. The spectral resolution of the detector is determined by the width of the local-oscillator spectral line whose measured value does not exceed 1 MHz. The quantum-cascade laser could be linearly tuned with respect to frequency with the coefficient 7.2 MHz/mA within the limits of the current oscillation bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1307  
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'in, K.; Gol'tsman, G.; Gershenzon, E. doi  openurl
  Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers Type Conference Article
  Year 1997 Publication Proc. 27th Eur. Microwave Conf. Abbreviated Journal  
  Volume 2 Issue Pages (down) 972-977  
  Keywords HEB mixer, fabrication process  
  Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 nm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 um wide and 2 um long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.2 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.  
  Address Jerusalem, Israel  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 27th Eur. Microwave Conf.  
  Notes Approved no  
  Call Number Serial 1075  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S. url  doi
openurl 
  Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
  Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.  
  Volume 57 Issue 7 Pages (down) 971-974  
  Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers  
  Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7842 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1378  
Permanent link to this record
 

 
Author Kroug, M.; Cherednichenko, S.; Merkel, H.; Kollberg, E.; Voronov, B.; Gol'tsman, G.; Hübers, H. W.; Richter, H. doi  openurl
  Title NbN hot electron bolometric mixers for terahertz receivers Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages (down) 962-965  
  Keywords NbN HEB mixers  
  Abstract Sensitivity and gain bandwidth measurements of phonon-cooled NbN superconducting hot-electron bolometer mixers are presented. The best receiver noise temperatures are: 700 K at 1.6 THz and 1100 K at 2.5 THz. Parylene as an antireflection coating on silicon has been investigated and used in the optics of the receiver. The dependence of the mixer gain bandwidth (GBW) on the bias voltage has been measured. Starting from low bias voltages, close to operating conditions yielding the lowest noise temperature, the GBW increases towards higher bias voltages, up to three times the initial value. The highest measured GBW is 9 GHz within the same bias range the noise temperature increases by a factor of two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 312  
Permanent link to this record
 

 
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages (down) 952-954  
  Keywords NbN HEB mixers  
  Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1546  
Permanent link to this record
 

 
Author Hans Ekstrom; Karasik, Boris S.; Kollberg, Erik L.; Sigfrid Yngvesson openurl 
  Title Conversion gain and noise of niobium superconducting hot–electron–mixers Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 43 Issue 4 Pages (down) 938-947  
  Keywords Nb HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 254  
Permanent link to this record
 

 
Author Karasik, B. S.; Elantiev, A. I. url  doi
openurl 
  Title Noise temperature limit of a superconducting hot-electron bolometer mixer Type Journal Article
  Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 68 Issue 6 Pages (down) 853-855  
  Keywords HEB mixer noise temperature, Johnson noise, thermal fluctuation noise, noise bandwidth  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 260  
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N. url  doi
openurl 
  Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages (down) 853-855  
  Keywords YBCO HTS HEB mixers  
  Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1563  
Permanent link to this record
 

 
Author Ekstrom, H.; Karasik, B.; Weikle, R.; Yngvesson, K. S.; Gol’tsman, G.; Kollberg, E.; Gershenzon, E. url  doi
openurl 
  Title Mixers using superconducting Nb films in the resistive state Type Conference Article
  Year 1993 Publication 23rd European Microwave Conf. Abbreviated Journal 23rd European Microwave Conf.  
  Volume Issue Pages (down) 787-789  
  Keywords Nb HEB mixers  
  Abstract The mixing of 20 GHz radiation in a Nb superconducting film in the resistive state was studied. The experiment gave evidence of electron-heating to be the origin of the non-linear phenomenon. The requirements on the operation mode and on the film parameters in order to obtain small conversion losses or even gain are determined. Our measurements indicate a conversion loss of about 6-8 dB. The hot-electron bolometer is considered to be very promising for use in heterodyne receivers in a wide frequency range from microwaves to terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1651  
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G. url  doi
openurl 
  Title A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type Conference Article
  Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest  
  Volume 2 Issue Pages (down) 751-754  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.  
  Address Philadelphia, PA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1516  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E. doi  openurl
  Title Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal  
  Volume 12 Issue 11 Pages (down) 748-750  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements of an NbN phonon-cooled hot-electron bolometric mixer in the terahertz frequency range. The devices were 3 nm thick films with in-plane dimensions 1.7 × 0.2 µm2 and 0.9 × 0.2 µm2 integrated in a complementary logarithmic-spiral antenna. Measurements were performed at seven frequencies ranging from 0.7 THz to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz) and 8800 K (5.2 THz).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 298  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages (down) 688-689  
  Keywords NbN HEB mixers  
  Abstract Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1445  
Permanent link to this record
 

 
Author Вахтомин, Ю. Б.; Антипов, С. В.; Масленников, С. Н.; Смирнов, К. В.; Поляков, С. Л.; Чжан, В.; Свечников, С. И.; Каурова, Н. С.; Гришина, Е. В.; Воронов, Б. М.; Гольцман, Г. Н. url  doi
openurl 
  Title Квазиоптические смесители терагерцового диапазона на основе эффекта разогрева электронов в тонких пленках NbN Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal  
  Volume 2 Issue Pages (down) 688-689  
  Keywords NbN HEB mixers  
  Abstract Представлены результаты измерения рактеристик смесителей на эффекте разогрева электронов в тонких сверхпроводниковых пленках NbN. Смесители были изготовлены на основе пленок NbN толщиной 2-3.5 нм осажденных на кремниевую подложку с буферным подсло- ем MgO. Смесительный элемент согласовывался с планар- ной логопериодической спиральной антенной. Лучшее зна- чение шумовой температуры приемника на основе NbN смесителя составило 1300 К и 3100 К на частотах гетеро- дина 2.5 TГц и 3.8 ТГц, соответственно. Максимальное зна- чение полосы преобразования, измеренной на частоте 900 |Ц, достигло значения 5.2 ГГц для смесителя изготовлен- ного из NbN пленки толщиной 2 нм. Оптимальная мощность Представлены результаты измерения ха- гетеродинного источника составила 1-3 мкВт для смесите- лей с различным объемом смесительного элемента.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1445 Approved no  
  Call Number Serial 1446  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting hot electron bolometer mixer for middle IR range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages (down) 686-687  
  Keywords IR NbN HEB mixer, detector, GaAs substrate  
  Abstract The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 4023440 Serial 1297  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages (down) 683-689  
  Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO&ap;1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N. url  openurl
  Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
  Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics  
  Volume 48 Issue 6 Pages (down) 671-675  
  Keywords NbN HEB mixers  
  Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.  
  Address  
  Corporate Author Thesis  
  Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no  
  Call Number Vakhtomin2003 Serial 1522  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Hübers, H.-W.; Gol'tsman, G.; Schwaab, G.; Voronov, B.; Gershenzon, E. url  openurl
  Title Broad-band terahertz NbN hot-electron bolometric mixer Type Conference Article
  Year 1999 Publication Inst. Phys. Conf. Abbreviated Journal Inst. Phys. Conf.  
  Volume 167 Issue Pages (down) 663-666  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 4th Europ. Conf. on Appl. Superconductivity, Barcelona, Spain, 14-17 September 1999  
  Notes Approved no  
  Call Number Serial 1578  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Phonon-cooled hot-electron bolometric mixer: overview of recent results Type Journal Article
  Year 1999 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.  
  Volume 6 Issue 10-12 Pages (down) 649-655  
  Keywords NbN HEB mixers  
  Abstract The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-1807 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1564  
Permanent link to this record
 

 
Author Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N. doi  openurl
  Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages (down) 645-648  
  Keywords waveguide NbN HEB mixers  
  Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 720  
Permanent link to this record
 

 
Author Рябчун, С. А.; Третьяков, И. В.; Пентин, И. В; Каурова, Н. С.; Селезнев, В. А; Воронов, Б. М.; Финкель, М. И.; Масленников, С. Н.; Гольцман, Г. Н. openurl 
  Title Малошумящий широкополосный терагерцовый смеситель на эффекте электронного разогрева в плёнке NbN Type Journal Article
  Year 2009 Publication Известия высших учебных заведений. Радиофизика Abbreviated Journal  
  Volume 52 Issue 8 Pages (down) 641-648  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract Разработан и исследован смеситель на горячих электронах, изготовленный из двуслойной плёнки NbN-Au, осаждённой на кремневую подложку in situ. Двухполосная шумовая температура устройства составила 750 К на частоте 2.5 ТГц. Измерения эффективности преобразования для смесителя длиной 0.112 мкм вблизи температуры сверхпроводящего перехода показали полосу промежуточных частот около 6.5 ГГц. Эти результаты являются рекордными и были получены за счёт улучшения контактов между чувствительным элементом и спиральной антенной при замене технологического маршрута с нанесением слоёв NbN и Au в отдельных процессах на технологический процесс, в котором данные слои наносятся in situ без нарушения вакуума.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 600  
Permanent link to this record
 

 
Author Skalare, A.; McGrath, William R.; Echternach, P. M.; Leduc, H. G.; Siddiqi, I.; Verevkin, A.; Prober, D. E. doi  openurl
  Title Aluminum hot-electron bolometer mixers at submillimeter wavelengths Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 11 Issue 1 Pages (down) 641-644  
  Keywords Al HEB mixer, contacts, interface, in situ, in-situ, Aluminium HEB mixer  
  Abstract Diffusion-cooled aluminum hot-electron bolometer (HEB) mixers are of interest for low-noise high resolution THz-frequency spectroscopy within astrophysics. Al HEB mixers offer operation with an order of magnitude less local oscillator power, higher intermediate frequency bandwidth and potentially lower noise than competing devices made from other materials. We report on mixer experiments at 618 GHz with devices fabricated from films with sheet resistances in the range from about 55 Ω down to about 9 Ω per square. Intermediate frequency bandwidths of up to 3 GHz were measured (1 μm long device), with absorbed local oscillator power levels of 0.5 to 6 nW and mixer conversion up to -21.5 dB. High input coupling efficiency implies that the electrons in the device are able to thermalize before escaping from the device. It was found that the long coherence length complicates mixer operations due to the proximity of the contact pads. Also, saturation at the IF frequency may be a concern for this type of device, and warrants further studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ref919426b Serial 1061  
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 21 Issue 3 Pages (down) 628-631  
  Keywords waveguide NbN HEB mixers  
  Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 719  
Permanent link to this record
 

 
Author Klapwijk, T. M.; Semenov, A. V. url  doi
openurl 
  Title Engineering physics of superconducting hot-electron bolometer mixers Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages (down) 627-648  
  Keywords HEB mixers  
  Abstract Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1292  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikov, Sergey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Ultrawide noise bandwidth of NbN hot-electron bolometer mixers with in situ gold contacts Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 21 Issue 3 Pages (down) 620-623  
  Keywords NbN HEB mixer bandwidth  
  Abstract We report a noise bandwidth of 7 GHz in the new generation of NbN hot-electron bolometer (HEB) mixers that are being developed for the space observatory Millimetron. The HEB receiver driven by a 2.5-THz local oscillator offered a noise temperature of 600 K in a 50-MHz final detection bandwidth. As the filter center frequency was swept this value remained nearly constant up to the cutoff frequency of the cryogenic amplifier at 7 GHz. We believe that such a low value of the noise temperature is due to reduced radio frequency (RF) loss at the interface between the superconducting film and the gold contacts. We have also performed gain bandwidth measurements at the superconducting transition on HEB mixers with various lengths and found them to be in excellent agreement with the results of the analytical and numerical models developed for the HEB mixer with both diffusion and phonon cooling of hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 716  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N. url  openurl
  Title Hot electron superconductive mixers Type Conference Article
  Year 1993 Publication Proc. 4th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 4th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 618-622  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1656  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Loudkov, D. N. url  doi
openurl 
  Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
  Year 2003 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 46 Issue 8/9 Pages (down) 604-617  
  Keywords NbN HEB mixers  
  Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes UDC 537.312.62 Approved no  
  Call Number Serial 472  
Permanent link to this record
 

 
Author Nebosis, R. S.; Semenov, A. D.; Gousev, Yu. P.; Renk, K. F. openurl 
  Title Rigorous analysis of a superconducting hot-electron bolometer mixer: theory and comparision with experiment Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (down) 601-613  
  Keywords HEB mixer, model, conversion gain, noise temperature, impedance, 2.5 THz  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, Virginia, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 605  
Permanent link to this record
 

 
Author Antipov, S. V.; Vachtomin, Yu. B.; Maslennikov, S. N.; Smirnov, K. V.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Noise performance of quasioptical ultrathin NbN hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW  
  Volume 2 Issue Pages (down) 592-594  
  Keywords NbN HEB mixers  
  Abstract To put space-based and airborne heterodyne instruments into operation at frequencies above 1 THz the superconducting NbN hot-electron bolometer (HEB) will be incorporated into heterodyne receiver as a mixer. At frequencies above 1.3 THz the sensitivity of the NbN HEB mixers outperform the one of the Schottky diodes and SIS-mixers, and the receiver noise temperature of the NbN HEB mixers increase with frequency. In this paper we present the results of the noise temperature measurements within one batch of NbN HEB mixers based on 3.5 mn thick superconducting NbN film grown on Si substrate with MgO buffer layer at the LO frequencies 2.5 THz and 3.8 THz.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Kharkov, Ukraine Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 351  
Permanent link to this record
 

 
Author Tretyakov, I. V.; Finkel, M. I.; Ryabchun, S. A.; Kardakova, A. I.; Seliverstov, S. V.; Petrenko, D. V.; Goltsman, G. N. url  doi
openurl 
  Title Hot-electron bolometer mixers with in situ contacts Type Journal Article
  Year 2014 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 56 Issue 8-9 Pages (down) 591-598  
  Keywords HEB mixers  
  Abstract We report on the latest achievements in the development of superconducting hot-electron bolometer (HEB) mixers for terahertz superheterodyne receivers. We consider application ranges of such receivers and requirements for the basic characteristics of the mixers. Main features of the mixers, such as noise temperature, gain bandwidth, noise bandwidth, and required local-oscillator power, have been improved significantly over the past few years due to intense research work, both in terms of the element fabrication quality and in terms of understanding of the physics of the processes occurring in the HEB mixers. Contacts between the superconducting bridge and the planar antenna play a key role in the mixer operation. Improvement of the quality of the contacts leads simultaneously to a decrease in the noise temperature and an increase in the gain bandwidth of a mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1170  
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
  Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume 1 Issue 5 Pages (down) 587-590  
  Keywords NbN HEB mixers  
  Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.  
  Address Hangzhou, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-7360 ISBN Medium  
  Area Expedition Conference Progress In Electromagnetics Research Symposium  
  Notes Approved no  
  Call Number Serial 1482  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Mueller, E. R.; Waldman, J.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenco, S. I.; Svechnikov, S. I.; Yagoubov, P. A.; Gershenzon, E. M. url  openurl
  Title Optimization of hot eleciron bolometer mixing efficiency in NbN at 119 micrometer wavelength Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 584-600  
  Keywords NbN HEB mixers  
  Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. An intrinsic conversion loss of 23 dB has been measured with a two-laser measurement technique. The conversion loss was limited by the LO power available and is expected to decrease to 10 dB or less when sufficient LO power is available. For this initial experiment we used a prototype device which is directly coupled to the laser beams. We present results for a back-short technique that improves the optical coupling to the device and describe our progress for an antenna-coupled device with a smaller dimension. Based on our measured data for conversion loss and device output noise level, we predict that NbN HEB mixers will be capable of achieving DSB receiver noise temperatures of ten times the quantum noise limit in the THz range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1616  
Permanent link to this record
 

 
Author Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  doi
openurl 
  Title Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages (down) 579-586  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II  
  Notes Approved no  
  Call Number Serial 1483  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. doi  openurl
  Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
  Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 52 Issue 8 Pages (down) 576-582  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 599  
Permanent link to this record
 

 
Author Ynvesson, K. Sigfrid; Kollberg, Erik L. openurl 
  Title Optimum receiver noise temperature for NbN HEB mixers according to standard model Type Conference Article
  Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (down) 566-582  
  Keywords HEB mixer model, standard model, electro-thermal feedback, self-heating parameter, heating efficiency  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 895  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW  
  Volume 2 Issue Pages (down) 558-560  
  Keywords AlGaAs/GaAs HEB mixers  
  Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 1487  
Permanent link to this record
 

 
Author Baubert, J.; Salez, M.; Delorme, Y.; Pons, P.; Goltsman, G.; Merkel, H.; Leconte, B. url  doi
openurl 
  Title Membrane-based HEB mixer for THz applications Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5116 Issue Pages (down) 551-562  
  Keywords membrane NbN HEB mixers, heterodyne receiver, stress-less membrane, coupling efficiency, submillimeter-waves frequency, low-cost space applications  
  Abstract We report in this paper a new concept for 2.7 THz superconducting Niobium nitride (NbN) Hot-Electron Bolometer mixer (HEB). The membrane process was developped for space telecommnunication applications a few years ago and the HEB mixer concept is now considered as the best choice for low-noise submillimeter-wave frequency heterodyne receivers. The idea is then to join these two technologies. The novel fabrication scheme is to fabricate a NbN HEB mixer on a 1 μm thick stress-less Si3N4/SiO2 membrane. This seems to present numerous improvements concerning : use at higher RF frequencies, power coupling efficiency, HEB mixer sensitivity, noise temperature, and space applications. This work is to be continued within the framework of an ESA TRP project, a 2.7 THz heterodyne camera with numerous applications including a SOFIA airborne receiver. This paper presents the whole fabrication process, the validation tests and preliminary results. Membrane-based HEB mixer theory is currently being investigated and further tests such as heterodyne and Fourier transform spectrometry measurement are planed shortly.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Chiao, J.-C.; Varadan, V.K.; Cané, C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Smart Sensors, Actuators, and MEMS  
  Notes Approved no  
  Call Number Serial 1520  
Permanent link to this record
 

 
Author Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P. url  doi
openurl 
  Title Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser Type Journal Article
  Year 2017 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 60 Issue 7 Pages (down) 518-524  
  Keywords NbN HEB mixer, QCL  
  Abstract We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1322  
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol’tsman, G.; Kollberg, E.; Winkler, D. url  openurl
  Title YBa2Cu3O7-δ hot-electron bolometer mixer at 0.6 THz Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 517-522  
  Keywords YBCO HTS HEB mixers  
  Abstract We present an investigation of hot-electron bolometric mixer based on a YBa 2 Cu 3 O 7-δ (YBCO) superconducting thin film. Mixer conversion loss of –46 dB, absorbed local oscillator power and intermediate frequency bandwidth were measured at the local oscillator frequency 0.6 THz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated with a planar antenna structure is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1556  
Permanent link to this record
 

 
Author Jiang, L.; Li, J.; Zhang, W.; Yao, Q. J.; Lin, Z. L.; Shi, S. C.; Vachtomin, Y. B.; Antipov, S. V.; Svechnikov, S. I.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Characterization of NbN HEB mixers cooled by a close-cycled 4 Kelvin refrigerator Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages (down) 511-513  
  Keywords NbN HEB mixers  
  Abstract It is quite beneficial to operate superconducting hot-electron-bolometer (HEB) mixers with a close-cycled 4 Kelvin refrigerator for real applications such as astronomy and atmospheric research. In this paper, a phononcooled NbN HEB mixer (quasioptical type) is thoroughly characterized under such a cooling circumstance. The effects of mechanical vibration, electrical interference, and temperature fluctuation of a two-stage Gifford-McMahon 4 Kelvin refrigerator upon the characteristics of the phononcooled NbN HEB mixer are investigated in particular. Detailed measurement results are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1469  
Permanent link to this record
 

 
Author Baubert, J.; Salez, M.; Merkel, H.; Pons, P.; Cherednichenko, S.; Lecomte, B.; Drakinsky, V.; Goltsman, G.; Leone, B. url  doi
openurl 
  Title IF gain bandwidth of membrane-based NbN hot electron bolometers for SHAHIRA Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages (down) 507-510  
  Keywords NbN HEB mixers, applications  
  Abstract SHAHIRA (Submm Heterodyne Array for HIgh-speed Radio Astronomy) is a project supported by the European Space Agency (ESA) and is designed to fly on the SOFIA observatory. A quasi-optic design has been chosen for 2.5/2.7 THz and 4.7 THz, for hydroxyde radical OH, deuterated hydrogen HD and neutral atomic oxygen OI lines observations. Hot electron bolometers (HEBs) have been processed on 1 /spl mu/m thick SiO/sub 2//Si/sub 3/N/sub 4/ stress-less membranes. In this paper we analyse the intermediate frequency (IF) gain bandwidth from the theoretical point of view, and compare it to measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1468  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N. url  doi
openurl 
  Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 87 Issue 1 Pages (down) 502-510  
  Keywords NbN HEB mixers, nonthermal  
  Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1558  
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages (down) 495-498  
  Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model  
  Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 980  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: